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Preface

Habe Muth dich deines eigenen Verstandes zu bedienen.
(Have the courage to think for yourself.)

Immanuel Kant, in Beantwortung der Frage: Was ist Aufklärung?

The disciplines of statistical mechanics and thermodynamics are very closely related,
although their historical roots are separate. The founders of thermodynamics devel-
oped their theories without the advantage of contemporary understanding of the
atomic structure of matter. Statistical mechanics, which is built on this understanding,
makes predictions of system behavior that lead to thermodynamic rules. In other
words, statistical mechanics is a conceptual precursor to thermodynamics, although it
is an historical latecomer.

Unfortunately, despite their theoretical connection, statistical mechanics and ther-
modynamics are often taught as separate fields of study. Even worse, thermodynamics
is usually taught first, for the dubious reason that it is older than statistical mechanics.
All too often the result is that students regard thermodynamics as a set of highly
abstract mathematical relationships, the significance of which is not clear.

This book is an effort to rectify the situation. It presents the two complementary
aspects of thermal physics as a coherent theory of the properties of matter. My
intention is that after working through this text a student will have solid foundations
in both statistical mechanics and thermodynamics that will provide direct access to
modern research.

Guiding Principles

In writing this book I have been guided by a number of principles, only some of which
are shared by other textbooks in statistical mechanics and thermodynamics.

• I have written this book for students, not professors. Many things that experts
might take for granted are explained explicitly. Indeed, student contributions have
been essential in constructing clear explanations that do not leave out ‘obvious’
steps that can be puzzling to someone new to this material.

• The goal of the book is to provide the student with conceptual understanding, and
the problems are designed in the service of this goal. They are quite challenging,
but the challenges are primarily conceptual rather than algebraic or computa-
tional.

• I believe that students should have the opportunity to program models themselves
and observe how the models behave under different conditions. Therefore, the
problems include extensive use of computation.
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• The book is intended to be accessible to students at different levels of preparation.
I do not make a distinction between teaching the material at the advanced
undergraduate and graduate levels, and indeed, I have taught such a course many
times using the same approach and much of the same material for both groups. As
the mathematics is entirely self-contained, students can master all of the material
even if their mathematical preparation has some gaps. Graduate students with
previous courses on these topics should be able to use the book with self-study
to make up for any gaps in their training.

• After working through this text, a student should be well prepared to con-
tinue with more specialized topics in thermodynamics, statistical mechanics, and
condensed-matter physics.

Pedagogical Principles

The over-arching goals described above result in some unique features of my approach
to the teaching of statistical mechanics and thermodynamics, which I think merit
specific mention.

Teaching Statistical Mechanics

• The book begins with classical statistical mechanics to postpone the complica-
tions of quantum measurement until the basic ideas are established.

• I have defined ensembles in terms of probabilities, in keeping with Boltzmann’s
vision. In particular, the discussion of statistical mechanics is based on Boltz-
mann’s 1877 definition of entropy. This is not the definition usually found in
textbooks, but what he actually wrote. The use of Boltzmann’s definition is one of
the key features of the book that enables students to obtain a deep understanding
of the foundations of both statistical mechanics and thermodynamics.

• A self-contained discussion of probability theory is presented for both discrete
and continuous random variables, including all material needed to understand
basic statistical mechanics. This material would be superfluous if the physics
curriculum were to include a course in probability theory, but unfortunately, that
is not usually the case. (A course in statistics would also be very valuable for
physics students—but that is another story.)

• Dirac delta functions are used to formulate the theory of continuous random
variables, as well as to simplify the derivations of densities of states. This is not
the way mathematicians tend to introduce probability densities, but I believe that
it is by far the most useful approach for scientists.

• Entropy is presented as a logical consequence of applying probability theory to
systems containing a large number of particles, instead of just an equation to be
memorized.

• The entropy of the classical ideal gas is derived in detail. This provides an
explicit example of an entropy function that exhibits all the properties postulated
in thermodynamics. The example is simple enough to give every detail of the
derivation of thermodynamic properties from statistical mechanics.
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• The book includes an explanation of Gibbs’ paradox—which is not really para-
doxical when you begin with Boltzmann’s 1877 definition of the entropy.

• The apparent contradiction between observed irreversibility and time-reversal-
invariant equations of motion is explained. I believe that this fills an important
gap in a student’s appreciation of how a description of macroscopic phenomena
can arise from statistical principles.

Teaching Thermodynamics

• The four fundamental postulates of thermodynamics proposed by Callen have
been reformulated. The result is a set of six thermodynamic postulates, sequenced
so as to build conceptual understanding.

• Jacobians are used to simplify the derivation of thermodynamic identities.
• The thermodynamic limit is discussed, but the validity of thermodynamics and

statistical mechanics does not rely on taking the limit of infinite size. This is
important if thermodynamics is to be applied to real systems, but is sometimes
neglected in textbooks.

• My treatment includes thermodynamics of non-extensive systems. This allows
me to include descriptions of systems with surfaces and systems enclosed in
containers.

Organization and Content

The principles I have described above lead me to an organization for the book that
is quite different from what has become the norm. As was stated above, while most
texts on thermal physics begin with thermodynamics for historical reasons, I think it
is far preferable from the perspective of pedagogy to begin with statistical mechanics,
including an introduction to those parts of probability theory that are essential to
statistical mechanics.

To postpone the conceptual problems associated with quantum measurement, the
initial discussion of statistical mechanics in Part I is limited to classical systems.
The entropy of the classical ideal gas is derived in detail, with a clear justification
for every step. A crucial aspect of the explanation and derivation of the entropy is
the use of Boltzmann’s 1877 definition, which relates entropy to the probability of a
macroscopic state. This definition provides a solid, intuitive understanding of what
entropy is all about. It is my experience that after students have seen the derivation
of the entropy of the classical ideal gas, they immediately understand the postulates
of thermodynamics, since those postulates simply codify properties that they have
derived explicitly for a special case.

The treatment of statistical mechanics paves the way to the development of
thermodynamics in Part II. While this development is largely based on the classic
work by Herbert Callen (who was my thesis advisor), there are significant differences.
Perhaps the most important is that I have relied entirely on Jacobians to derive
thermodynamic identities. Instead of regarding such derivations with dread—as I did
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when I first encountered them—my students tend to regard them as straightforward
and rather easy. There are also several other changes in emphasis, such as a clarification
of the postulates of thermodynamics and the inclusion of non-extensive systems; that
is, finite systems that have surfaces or are enclosed in containers.

Part III returns to classical statistical mechanics and develops the general theory
directly, instead of using the common roundabout approach of taking the classical
limit of quantum statistical mechanics. A chapter is devoted to a discussion of the
apparent paradoxes between microscopic reversibility and macroscopic irreversibility.

Part IV presents quantum statistical mechanics. The development begins by
considering a probability distribution over all quantum states, instead of the common
ad hoc restriction to eigenstates. In addition to the basic concepts, it covers black-
body radiation, the harmonic crystal, and both Bose and Fermi gases. Because of
their practical and theoretical importance, there is a separate chapter on insulators
and semiconductors. The final chapter introduces the Ising model of magnetic phase
transitions.

The book contains about a hundred multi-part problems that should be considered
as part of the text. In keeping with the level of the text, the problems are fairly
challenging, and an effort has been made to avoid ‘plug and chug’ assignments.
The challenges in the problems are mainly due to the probing of essential concepts,
rather than mathematical complexities. A complete set of solutions to the problems
is available from the publisher.

Several of the problems, especially in the chapters on probability, rely on computer
simulations to lead students to a deeper understanding. In the past I have suggested
that my students use the C++ programming language, but for the last two years
I have switched to VPython for its simplicity and the ease with which it generates
graphs. An introduction to the basic features of VPython is given in in Appendix A.
Most of my students have used VPython, but a significant fraction have chosen to use
a different language—usually Java, C, or C++. I have not encountered any difficulties
with allowing students to use the programming language of their choice.

Two Semesters or One?

The presentation of the material in this book is based primarily on a two-semester
undergraduate course in thermal physics that I have taught several times at Carnegie
Mellon University. Since two-semester undergraduate courses in thermal physics are
rather unusual, its existence at Carnegie Mellon for several decades might be regarded
as surprising. In my opinion, it should be the norm. Although it was quite reasonable
to teach two semesters of classical mechanics and one semester of thermodynamics to
undergraduates in the nineteenth century—the development of statistical mechanics
was just beginning—it is not reasonable in the twenty-first century.

However, even at Carnegie Mellon only the first semester of thermal physics is
required. All physics majors take the first semester, and about half continue on to
the second semester, accompanied by a few students from other departments. When I
teach the course, the first semester covers the first two parts of the book (Chapters 1
through 18), plus an overview of classical canonical ensembles (Chapter 18) and
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quantum canonical ensembles (Chapter 22). This gives the students an introduction
to statistical mechanics and a rather thorough knowledge of thermodynamics, even if
they do not take the second semester.

It is also possible to teach a one-semester course in thermal physics from this book
using different choices of material. For example:

• If the students have a strong background in probability theory (which is, unfortu-
nately, fairly rare), Chapters 3 and 5 might be skipped to include more material
in Parts III and IV.

• If it is decided that students need a broader exposure to statistical mechanics, but
that a less detailed study of thermodynamics is sufficient, Chapters 14 through
17 could be skimmed to have time to study selected chapters in Parts III and IV.

• If the students have already had a thermodynamics course (although I do not
recommend this course sequence), Part II could be skipped entirely. However,
even if this choice is made, students might still find Chapters 9 to 18 useful for
review.

One possibility that I do not recommend would be to skip the computational
material. I am strongly of the opinion that the undergraduate physics curricula at
most universities still contain too little instruction in the computational methods that
students will need in their careers.
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1

Introduction

If, in some cataclysm, all scientific knowledge were to be destroyed, and only
one sentence passed on to the next generation of creatures, what statement
would contain the most information in the fewest words? I believe it is the
atomic hypothesis (or atomic fact, or whatever you wish to call it) that
all things are made of atoms—little particles that move around in perpetual
motion, attracting each other when they are a little distance apart, but repelling
upon being squeezed into one another. In that one sentence you will see an
enormous amount of information about the world, if just a little imagination
and thinking are applied.

Richard Feynman, in The Feynman Lectures on Physics

1.1 Thermal Physics

This book is about the things you encounter in everyday life: the book you are reading,
the chair on which you are sitting, the air you are breathing. It is about things that
can be hot or cold; hard or soft; solid, liquid, or gas. It is about machines that work
for you: automobiles, heaters, refrigerators, air conditioners. It is even about your
own body and the stuff of life. The whole topic is sometimes referred to as thermal
physics, and it is usually divided into two main topics: thermodynamics and statistical
mechanics.

Thermodynamics is the study of everything connected with heat. It provides
powerful methods for connecting observable quantities by equations that are not
at all obvious, but are nevertheless true for all materials. Statistical mechanics is
the study of what happens when large numbers of particles interact. It provides
a foundation for thermodynamics and the ultimate justification of why thermody-
namics works. It goes beyond thermodynamics to reveal deeper connections between
molecular behavior and material properties. It also provides a way to calculate the
properties of specific objects, instead of just the universal relationships provided by
thermodynamics.

The ideas and methods of thermal physics differ from those of other branches of
physics. Thermodynamics and statistical mechanics each require their own particular
ways of thinking. Studying thermal physics is not about memorizing formulas; it is
about gaining a new understanding of the world.
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1.2 What are the Questions?

Thermal physics seeks quantitative explanations for the properties of macroscopic
objects, where the term ‘macroscopic’ means two things:

1. A macroscopic object is made up of a large number of particles.
2. Macroscopic measurements have limited resolution.

The apparently vague terms ‘large number’ and ‘limited resolution’ take on specific
meanings with respect to the law of large numbers that we will study in Chapter 3. We
will see that the relative statistical uncertainty in quantities like the energy and the
number of particles is usually inversely proportional to the square root of the number
of particles. If this uncertainty is much smaller than the experimental resolution, it can
be neglected. This leads to thermodynamics, which is a description of the macroscopic
properties that ignores small statistical fluctuations.

We will assume that we somehow know what the object is made of; that is, what
kinds of atoms and molecules it contains, and how many of each. We will generally
speak of ‘systems’ instead of objects. The difference is that a system can consist of any
number of objects, and is somehow separated from the rest of the universe. We will
concentrate on systems in equilibrium; that is, systems that have been undisturbed
long enough for their properties to take on constant values. We shall be more specific
about what ‘long enough’ means in Chapter 21.

In the simplest case—which we will consider in Part I—a system might be com-
pletely isolated by ‘adiabatic’ walls; that is, rigid barriers that let nothing through.
We will also assume, at least at first, that we know how much energy is contained in
our isolated system.

Given this information, we will ask questions about the properties of the system.
We will first study a simple model of a gas, so we will want to know what temperature
and pressure are, and how they are related to each other and to the volume. We will
want to know how the volume or the pressure will change if we heat the gas. As we
investigate more complicated systems, we will see more complicated behavior and find
more questions to ask about the properties of matter.

As a hint of things to come, we will find that there is a function of the energy E,
volume V , and number of particles N that is sufficient to answer all questions about
the thermal properties of a system. It is called the entropy, and it is denoted by the
letter S.

If we can calculate the entropy as a function of E, V , and N , we know everything
about the macroscopic properties of the system. For this reason, S = S(E, V,N) is
known as a fundamental relation, and it is the focus of Part I.

1.3 History

Atoms exist, combine into molecules, and form every object we encounter in life. Today,
this statement is taken for granted. However, in the nineteenth century, and even into
the early twentieth century, these were fighting words. The Austrian physicist Ludwig
Boltzmann (1844–1906) and a small group of other scientists championed the idea of
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atoms and molecules as the basis of a fundamental theory of the thermal properties
of matter, against the violent objections of another Austrian physicist, Ernst Mach
(1838–1916), and many of his colleagues. Boltzmann was right, of course, but the issue
had not been completely settled even at the time of his tragic suicide in 1906. In the
tradition of Boltzmann, the intention in this book is to present thermodynamics as a
consequence of the molecular nature of matter.

The theory of thermodynamics was developed without benefit of the atomic
hypothesis. It began with the seminal work of Sadi Carnot (French physicist,
1792–1832), who initiated the scientific discussion of heat engines. The First Law
of Thermodynamics was discovered by James Prescott Joule (English physicist,
1818–1889), when he established that heat was a form of energy and measured the
mechanical equivalent of heat. The Second Law of Thermodynamics was first stated
in 1850 by Rudolf Clausius (German physicist, 1822–1888), who in 1865 also invented
the related concept of entropy. The Second Law can be expressed by the statement
that the entropy of an isolated system can increase, but not decrease.

Entropy was a mystery to nineteenth-century scientists. Clausius had given entropy
an experimental definition that allowed it to be calculated, but its meaning was
puzzling. Like energy it could not be destroyed, but unlike energy it could be created.
It was essential to the calculation of the efficiency of heat engines (machines that turn
the energy in hot objects into mechanical work), but it did nt seem to be related to
any other physical laws.

The reason why scientists working in the middle of the nineteenth century found
entropy so mysterious is that few of them thought in terms of atoms or molecules.
Even with molecular theory, explaining the entropy required brilliant insight; without
molecular theory, there was no hope.

Serious progress in understanding the properties of matter and the origins of
thermodynamic laws on the basis of the molecular nature of matter began in the 1860s
with the work of Boltzmann and the American physicist J. Willard Gibbs (1839–1903).

Gibbs worked from a formal starting point, postulating that observable quantities
could be calculated from an average over many replicas of an object in different
microscopic configurations, and then working out what the equations would have to
be. His work is very beautiful (to a theoretical physicist), although somewhat formal.
However, it left certain questions unresolved—most notably, what has come to be
called ‘Gibbs’ paradox.’ This issue concerned a discontinuous change in the entropy
when differences in the properties of particles in a mixture were imagined to disappear
continuously. Gibbs himself did not regard this as a paradox; it was so named by
the German physicist Otto Wiedeburg (1866–1901), who had read Gibbs’ work on
thermodynamics in a German translation by the prominent German chemist Wilhelm
Ostwald (1853–1932, Nobel Prize 1909). The issues involved are still a matter of debate
in the twenty-first century.

Boltzmann devoted most of his career to establishing the molecular theory of
matter and deriving the consequences of the existence of atoms and molecules. One
of his great achievements was his 1877 definition of entropy—a definition which
provides a physical interpretation of the entropy and the foundation of statistical
mechanics.
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Part I of this book is devoted to developing an intuitive understanding of the
concept of entropy, based on Boltzmann’s definition. We will present an explicit,
detailed derivation of the entropy for a simple model to provide insight into its signif-
icance. Later parts of the book will develop more sophisticated tools for investigating
thermodynamics and statistical mechanics, but they are all based on Boltzmann’s
definition of the entropy.

1.4 Basic Concepts and Assumptions

This book is concerned with the macroscopic behavior of systems containing many
particles. This is a broad topic, since everything we encounter in the world around
us contains enormous numbers of atoms and molecules. Even in fairly small objects,
there are 1020 or more atoms.

Atoms and molecules are not the only examples of large numbers of particles in
a system. Colloids, for example, can consist of 1012 or more microscopic particles
suspended in a liquid. The large number of particles in a typical colloid means that
they are also well described by statistical mechanics.

Another aspect of macroscopic experiments is that they have limited resolution.
We will see in Part I that the fluctuations in quantities like the density of a system are
approximately inversely proportional to the square root of the number of particles in
the system. If there are 1020 molecules, this gives a relative uncertainty of about 10−10

for the average density. Because it is rare to measure the density to better than one
part in 106, these tiny fluctuations are not seen in macroscopic measurements. Indeed,
an important reason for Mach’s objection to Boltzmann’s molecular hypothesis was
that no direct measurement of atoms had ever been carried out in the nineteenth
century.

Besides the limited accuracy, it is rare for more than a million quantities to
be measured in an experiment, and usually only a handful of measurements are
made. Since it would take about 6N quantities to specify the microscopic state of
N atoms, thermodynamic measurements provide relatively little information about
the microscopic state.

Due to our lack of detailed knowledge of the microscopic state of an object, we need
to use probability theory—discussed in Chapters 3 and 5—to make further progress.
However, we do not know the probabilities of the various microscopic states either.
This means that we have to make assumptions about the probabilities. We will make
the simplest assumptions that are consistent with the physical constraints (number of
particles, total energy, and so on): we will assume that everything we do not know is
equally probable.

Based on our assumptions about the probability distribution, we will calculate the
macroscopic properties of the system and compare our predictions with experimental
data. We will find that our predictions are correct. This is comforting. However, we
must realize that it does not necessarily mean that our assumptions were correct. In
fact, we will see in Chapter 21 that many different assumptions would also lead to the
same predictions. This is not a flaw in the theory but simply a fact of life. Actually,
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recognizing this fact helps a great deal in resolving apparent paradoxes, as we will see
in Chapter 21.

The predictions we make based on assumptions about the probabilities of micro-
scopic states lead to the postulates of thermodynamics. These postulates, in turn, are
sufficient to derive the very powerful formalism of thermodynamics, as we will see in
Part II.

These same assumptions about the probabilities of microscopic states also lead to
the even more powerful formalism of statistical mechanics, which we will investigate
in the last two parts of the book.

1.4.1 State Functions

It has long been known that when most macroscopic systems are left by themselves
for a long period of time, their measurable properties stop changing and become time-
independent. Simple systems, like a container of gas, evolve into macroscopic states
that are well described by a small number of variables. For a simple gas, the energy,
volume, and number of particles might be sufficient. These quantities, along with other
quantities that we will discuss, are known as ‘state functions’.

The molecules in a macroscopic system are in constant motion, so that the
microscopic state is constantly changing. This fact leads to a basic question. How is it
that the macroscopic state can be time-independent with precisely defined properties?
The answer to this question should become clear in Part I of this book.

1.4.2 Irreversibility

A second basic question is this. Even if there exist equilibrium macroscopic states
that are independent of time, how can a system evolve toward such a state but
not away from it? How can a system obeying time-reversal-invariant laws of motion
show irreversible behavior? This question has been the subject of much debate, at
least since Johann Josef Loschmidt’s (Austrian physicist, 1821–1895) formulation of
the ‘reversibility paradox’ in 1876. We will present a resolution of the paradox in
Chapter 21.

1.4.3 Entropy

The Second Law of Thermodynamics states that there exists a state function called
the ‘entropy’ that is maximized in equilibrium. Boltzmann’s 1877 definition of the
entropy provides an account of what this means. A major purpose of the calculation
of the entropy of a classical ideal gas in Part I is to obtain an intuitive understanding
of the significance of Boltzmann’s entropy.

1.5 Road Map

The intention of this book is to present thermal physics as a consequence of the
molecular nature of matter. The book is divided into four parts, in order to provide
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a systematic development of the ideas for someone coming to the subject for the first
time, as well as for someone who knows the basic material but would like to review a
particular topic.

Part I : Entropy The ideal gas is a simple classical model with macroscopic prop-
erties that can be calculated exactly. This allows us to derive the entropy in closed
form without any hidden assumptions. Since the entropy of the classical ideal gas
exhibits most of the thermodynamic properties of more general systems, it will
serve as an introduction to the otherwise rather abstract and formal postulates of
thermodynamics. In the last two chapters of Part I, the formal expression for the
entropy of a classical gas with interacting particles is obtained, along with general
expressions for the temperature, pressure, and chemical potential, which establish the
foundations of classical statistical mechanics.
Part II: Thermodynamics The formal postulates of thermodynamics are intro-
duced, based on the properties of the entropy derived in Part I. Our treatment follows
the vision of László Tisza (Hungarian physicist, 1907–2009) and Herbert B. Callen
(American physicist, 1919–1993). Although the original development of thermodynam-
ics by nineteenth-century physicists was a brilliant achievement, their arguments were
somewhat convoluted because they did not understand the microscopic molecular basis
of the laws they had discovered. Deriving the equations of thermodynamics from postu-
lates is much easier than following the historical path. The full power of thermodynam-
ics can be developed in a straightforward manner and the structure of the theory made
transparent.
Part III: Classical statistical mechanics Here we return to classical statistical
mechanics to discuss more powerful methods of calculation. In particular, we introduce
the canonical ensemble, which describes the behavior of a system in contact with a
heat bath at constant temperature. The canonical ensemble provides a very powerful
approach to solving most problems in classical statistical mechanics. We also introduce
the grand canonical ensemble, which describes a system that can exchange particles
with a large system at a fixed chemical potential. This ensemble will prove to be par-
ticularly important when we encounter it again in Chapters 26 through 29 of Part IV,
where we discuss quantum systems of indistinguishable particles. Statistical mechanics
can derive results that go beyond those of thermodynamics. We discuss and resolve
the apparent conflict between time-reversal-invariant microscopic equations with the
obvious existence of irreversible behavior in the macroscopic world. Part III will also
introduce molecular dynamics and Monte Carlo computer simulations to demon-
strate some of the modern methods for obtaining information about many-particle
systems.
Part IV: Quantum statistical mechanics In the last part of the book we develop
quantum statistical mechanics, which is necessary for the understanding of the prop-
erties of most real systems. After two introductory chapters on basic ideas we will
devote chapters to black-body radiation and lattice vibrations. There is a chapter
on the general theory of indistinguishable particles, followed by individual chapters



Road Map 7

on the properties of bosons and fermions. Since the application of the theory of
fermions to the properties of insulators and semiconductors has both theoretical and
practical importance, this topic has a chapter of its own. The last chapter provides
an introduction to the Ising model of ferromagnetism as an example of the theory of
phase transitions.
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The Classical Ideal Gas

A mathematician may say anything he pleases, but a physicist must be at least
partially sane.

J. Willard Gibbs

The purpose of Part I of this book is to provide an intuitive understanding of the
entropy, based on calculations for a simple model. The model chosen is the classical
ideal gas, for which the entropy can be calculated explicitly and completely without
any approximations or hidden assumptions.

The treatment is entirely in terms of the theory of classical mechanics. No quantum
mechanical concepts are used. All the ideas will follow directly from Boltzmann’s work.
We will use more modern mathematical methods than he did to derive the entropy
of the classical ideal gas, but we will make no assumptions with which he was not
familiar.

In Chapters 7 and 8 the formal expression for the entropy will be extended to
classical systems with interacting particles. Although the expression we obtain can
rarely be evaluated exactly, the formal structure will be sufficient to provide a basis
for the development of thermodynamics in Part II. The same formal structure will
also lead to more powerful methods of calculation for statistical mechanics in Parts III
and IV.

2.1 Ideal Gas

What distinguishes an ‘ideal’ gas from a ‘real’ gas is the absence of interactions
between the particles. Although an ideal gas might seem to be an unrealistic model, its
properties are experimentally accessible by studying real gases at low densities. Since
even the molecules in the air you are breathing are separated by an average distance
of about ten times their diameter, nearly ideal gases are easy to find.

The most important feature that is missing from a classical ideal gas is that it does
not exhibit any phase transitions. Other than that, its properties are qualitatively the
same as those of real gases, which makes it valuable for developing intuition about
statistical mechanics and thermodynamics.

The great advantage of the ideal gas model is that all of its properties can be
calculated exactly, and nothing is obscured by mathematical complexity.
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2.2 Phase Space of a Classical Gas

Our model of a classical gas consists of N particles contained in some specified
volume. Each particle has a well-defined position and momentum. The positions of
every particle can be represented as a point in configuration space—an abstract 3N -
dimensional space, with axes for every coordinate of every particle. These coordinates
can be given in various forms.

q = {�ri|i = 1, . . . , N} (2.1)

= {xi, yi, zi|i = 1, . . . , N}
= {qj |j = 1, . . . , 3N}

The momentum of every particle can be represented as a point in momentum
space—an abstract 3N -dimensional space, with axes for every component of the
momentum of every particle.

p = {�pi|i = 1, . . . , N} (2.2)

= {px,i, py,i, py,i|i = 1, . . . , N}
= {pj |j = 1, . . . , 3N}

The complete microscopic state of the system can be described by a point in phase
space—an abstract 6N -dimensional space with axes for every coordinate and every
momentum component for all N particles. Phase space is the union of configuration
space and momentum space, {p, q}.

{p, q} = {qj , pj |j = 1, . . . , 3N} (2.3)

The kinetic energy of the i-th particle is given by the usual expression, |�pi|2/2m,
and the total kinetic energy is just the sum of the kinetic energies of all particles.

E =
N∑

i=1

|�pi|2
2m

(2.4)

Since, by definition, there are no interactions between the particles in an ideal gas,
the potential energy of the system is zero.

2.3 Distinguishability

Particles will be regarded as distinguishable, in keeping with classical concepts. To
be specific, particles are distinguishable when the exchange of two particles results in
a different microscopic state. In classical mechanics, this is equivalent to saying that
every point in phase space represents a different microscopic state. Distinguishability
does not necessarily mean that the particles have different properties; classically,
particles were always regarded as distinguishable because their trajectories could, at
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least in a thought experiment, be followed and the identity of individual particles
determined.

On the other hand, it will be important to remember that experiments on macro-
scopic systems are always assumed to have limited resolution. In both statistical
mechanics and thermodynamics we are concerned with measurements that do not
have the sensitivity to resolve the positions or identities of individual atoms.

2.4 Probability Theory

Because of the importance of probability theory in statistical mechanics, two chapters
are devoted to the topic. The chapters discuss the basic principles of the probability
theory of discrete random variables (Chapter 3) and continuous random variables
(Chapter 5).

The mathematical treatment of probability theory has been separated from the
physical application for several reasons: (1) it provides an easy reference for the
mathematics, (2) it makes the derivation of the entropy more compact, and (3) it
is unobtrusive for those readers who are already completely familiar with probability
theory.

If the reader is already familiar with probability theory, Chapters 3 and 5 might be
skipped. However, since the methods for the transformation of random variables pre-
sented there differ from those usually found in mathematics textbooks, these chapters
might still be of some interest. It should be noted that we will need the transformation
methods using Dirac delta functions, which are rarely found in mathematical texts on
probability theory.

The chapters on probability theory are placed just before the chapters in which the
material is first needed to calculate contributions to the entropy. Chapter 3 provides
the methods needed to calculate the contributions of the positions in Chapter 4, and
Chapter 5 provides the methods needed to calculate the contributions of the momenta
in Chapter 6.

To apply probability theory to the calculation of the properties of the classical ideal
gas—or any other model, for that matter—we will have to make assumptions about
the probability distribution of the positions and momenta of 1020 or more particles.
Our basic strategy will be to make the simplest assumptions consistent with what we
know about the system and then calculate the consequences.

Another way of describing our strategy is that we are making a virtue of our
ignorance of the microscopic states and assume that everything we don’t know is
equally likely. How this plays out in practice is the subject of the rest of the book.

2.5 Boltzmann’s Definition of the Entropy

In 1877, after a few less successful attempts, Boltzmann defined the entropy in terms of
the probability of a macroscopic state. His explanation of the Second Law of Thermo-
dynamics was that isolated systems naturally develop from less probable macroscopic
states to more probable macroscopic states. Although Boltzmann’s earlier efforts to
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prove this with his famous H-theorem were problematic and highly controversial, his
basic insight is essentially correct.

In his 1877 paper, Boltzmann also specified that the entropy should be defined in
terms of a composite system; that is, a system composed of two or more subsystems
with some sort of constraint. An example of such a composite system would be a
volume of gas divided into two smaller volumes (or subsystems) by a partition. The
partition acts as a constraint by restricting the number of particles in each subsystem
to be constant. The removal of the partition would then allow the system to develop
from a less probable macroscopic state to a more probable macroscopic state. The final
state, after the composite system had come to equilibrium, would correspond to the
most probable macroscopic state. According to the Second Law of Thermodynamics,
the thermodynamic entropy should also be maximized in the equilibrium state. The
comparison of these two properties of the equilibrium state led Boltzmann to associate
the entropy with the probability of a macroscopic state, or more precisely with the
logarithm of the probability.

In the following chapters we will make a direct application of Boltzmann’s definition
to the calculation of the entropy of the classical ideal gas, to within additive and
multiplicative constants that we will determine later.

2.6 S = k log W

Boltzmann’s achievement has been honored with the inscription of the equation
S = k log W on his tombstone. The symbol S denotes the entropy. The symbol W
denotes the German word Wahrscheinlichkeit , which means ‘probability’. Curiously
enough, Boltzmann never wrote this equation, although it does accurately reflect his
ideas. The equation was first written in this form by the German physicist Max Planck
(1858–1947) in 1900. The constant k, also written as kB , is known as the Boltzmann
constant.

The symbol W has often been misinterpreted to mean a volume in phase space,
which has caused a considerable amount of trouble. This misinterpretation is so
common that many scientists are under the impression that Boltzmann defined the
entropy as the logarithm of a volume in phase space. Going back to the original
meaning of W and Boltzmann’s 1877 definition eliminates much of the confusion
about the statistical interpretation of entropy.

The main differences between Boltzmann’s treatment of entropy and the one in
this book lie in the use of modern mathematical methods and the explicit treatment
of the dependence of the entropy on the number of particles.

2.7 Independence of Positions and Momenta

In the derivation of the properties of the classical ideal gas, we will assume that
the positions and momenta of the particles are independent. We will present a more
formal definition of independence in the next chapter, but the idea is that knowing the
position of a particle tells us nothing about its momentum, and knowing its momentum
tells us nothing about its position. As demonstrated at the beginning of Chapter 4,
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the independence of the positions and momenta means that their contributions to
the total entropy can be calculated separately and simply added to produce the final
answer.

2.8 Road Map for Part I

The analysis of the entropy in Part I has been divided into chapters to make it easier
to keep track of the different aspects of the derivation.

The concepts and equations of discrete probability theory are developed in
Chapter 3, just before it is needed in Chapter 4 to calculate the contributions of
the positions to the entropy.

Probability theory for continuous random variables is discussed in Chapter 5, just
before its application to the calculation of the contributions of the momenta to the
entropy in Chapter 6.

Chapter 7 generalizes the results to systems with interacting particles.
Chapter 8 completes the foundations of classical statistical mechanics by relating

the partial derivatives of the entropy to the temperature, pressure, and chemical
potential.

The following flow chart is intended to illustrate the organization of Part I. The
derivation of the entropy of the classical ideal gas follows the arrows down the right-
hand side of the flow chart.

Flowchart for Part I

Chapter 2
Introduction to the classical
ideal gas

⇓
Chapter 3
Discrete probability theory ⇒

Chapter 4
Configurational entropy of
ideal gas

⇓
Chapter 5
Continuous probability the-
ory

⇒
Chapter 6
Energy-dependent entropy
of idealgas

⇓
Chapter 7
Complete entropy of real
and ideal classical gases

⇓
Chapter 8
T, P, μ and their relation-
ship to the entropy
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Discrete Probability Theory

It may be that the race is not always to the swift nor the battle to the
strong—but that’s the way to bet.

Damon Runyon

3.1 What is Probability?

The definition of probability is sufficiently problematic to have occasioned something
akin to religious wars in academic departments of statistics. There are two basic
factions: frequentists and Bayesians.

To understand why the definition of probability can be a problem, consider an
experiment with N trials, each of which can result in a success or failure by some
criterion. If Ns be the number of successes, then Ns/N is called the frequency of
success for those trials.

Frequentists define the probability by the asymptotic frequency of success in the
limit of an infinite number of trials.

p = lim
N→∞

Ns

N
(3.1)

This definition looks precise and objective. Indeed, it is found as the defin-
ition in many physics texts. The major problem is that humans have a finite
amount of time available, so that by the frequentist definition we can never deter-
mine the probability of anything. Bayesian probability provides a solution to this
quandary.

The Bayesian view of probability is based on the work of Thomas Bayes (English
mathematician and Presbyterian minister, 1702–1761). Bayesians define probability
as a description of a person’s knowledge of the outcome of a trial, based on whatever
evidence is at that person’s disposal.

One great advantage of the Bayesian definition of probability is that it gives a clear
meaning to a statement such as: ‘The mass of a proton is 1.672621637(83) × 10−27kg’,
where the ‘(83)’ is called the uncertainty in the last digit. What does ‘(83)’ mean?
Certainly the mass of a proton is an unambiguous number that does not take on
different values for different trials. Nevertheless, the ‘(83)’ does have meaning as an
expression of our uncertainty as to the exact value of a proton’s mass.
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Bayesian probability is accepted by most statisticians. However, it is in disrepute
among some physicists because they regard it as subjective, in the sense that it
describes what an individual knows, rather than being absolute truth. However, none
of us has access to absolute truth, and Bayesian statistics provides an appropriate way
to describe what we learn from experiments.

In my opinion, the only reasonable form of objectivity that we can demand is
that two observers with the same information will come to the same conclusions, and
Bayesian statistics fulfills this requirement.

There is one other use of the word ‘probability’ that can be quite important. I shall
call it ‘model probability’, and it differs from both the frequentist and the Bayesian
meanings.

A model probability is an assumption (or guess), as to what the frequency of
success would be for an infinite number of trials. The assumption is usually based on
the plausible argument that events that look very much alike, have equal probabilities.
We can then use this assumption, or model, to calculate the predicted outcome of an
experiment. If measurements agree with our predictions, we can say that our model
is consistent with the experiment. This is not the same thing as saying that our
model probabilities are correct, and we will see later that many different assumptions
can lead to the same predictions. Nevertheless, agreement with experiment is always
comforting.

Statistical mechanics is based on very simple assumptions, expressed as model
probabilities, that lead to a wide variety of predictions in excellent agreement with
experiment. How this is done is the main subject of this book.

All three definitions of probability have the same mathematical structure. This
reduces the amount of mathematics that we have to learn, but unfortunately does not
resolve the controversies.

3.2 Discrete Random Variables and Probabilities

We begin by defining a set of elementary events

A = {aj |j = 1, NA} (3.2)

and assigning a probability P (aj) to each event. The combination of random events
and their probabilities is called a ‘random variable’. If the number of elementary events
is a finite or countable, it is called a ‘discrete random variable’.

The probabilities must satisfy the conditions that

0 ≤ P (aj) ≤ 1 (3.3)

for all aj . An impossible event has probability zero, and a certain event has
probability 1.

Random events can be anything: heads/tails, red/black, and so on. If the random
events are all numbers, the random variable is called a ‘random number’.
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Elementary events are defined to be exclusive—one, and only one, event can occur
at each trial—so that the probabilities must also satisfy the normalization condition

NA∑
j=1

P (aj) = 1 (3.4)

To simplify notation we will often write this equation as∑
a

P (a) = 1 (3.5)

suppressing explicit mention of the number of elementary events.

3.3 Probability Theory for Multiple Random Variables

If more than one thing can happen at each trial we can describe the situation with
two or more sets of random events. For example, both an event from A and an event
from

B = {bk|k = 1, NB} (3.6)

might occur. We can then define a joint probability P (aj , bk)—or more simply,
P (a, b)—which must satisfy

0 ≤ P (a, b) ≤ 1 (3.7)

and ∑
a

∑
b

P (a, b) = 1 (3.8)

3.3.1 Marginal and Conditional Probability

Naturally, if we have P (a, b) we can retrieve the information for either A or B alone.
The marginal probability of A is defined by

PA(a) =
∑

b

P (a, b) (3.9)

with a similar expression for PB(b). A nice feature of marginal probabilities is that they
automatically satisfy the positivity and normalization criteria in eqs. (3.3) and (3.4).

The name marginal probability comes from the practice of calculating it in the
margins of a table of probabilities. Table 3.1 shows an example for two random
variables that each take on two values.

Conditional probability is the probability of an event a, given that event b has
occurred. It is denoted by P (a|b), and is related to the full probability of both A and
B occurring by the equations:
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P (a, b) = P (a|b)PB(b) (3.10)

= P (b|a)PA(a) (3.11)

If PB(b) �= 0, the conditional probability P (a|b) can be written as

P (a|b) =
P (a, b)
PB(b)

(3.12)

Combining eqs. (3.10) and eqs. (3.11) gives us Bayes’ theorem.

P (a|b) =
P (b|a)PA(a)

PB(b)
(3.13)

We will discuss some of the consequences of Bayes’ theorem in Section 5.5.

3.3.2 Independent Variables

A particularly interesting case occurs when the probability distribution can be written
as a product:

P (a, b) = PA(a)PB(b) (3.14)

When eq. (3.14) is true, the two random variables are said to be independent because
the conditional probability P (a|b) is then independent of b,

P (a|b) =
P (a, b)
PB(b)

=
PA(a)PB(b)

PB(b)
= PA(a) (3.15)

and P (b|a) is independent of a.
Table 3.1 gives an example of independent random variables, and Table 3.2 gives

an example of random variables that are not independent.

3.3.3 Pairwise Independence and Mutual Independence

If we have more than two random variables, the set of random variables might satisfy
two kinds of independence: pairwise or mutual.

Table 3.1 Example of a table of probabilities for independent random variables: The events of A

(labelled ‘3’ and ‘4’) are listed down the left column, and events of B (labelled ‘1’ and ‘2’) across

the top. The values of the probabilities are given in the four center squares. The margins contain

the marginal probabilities, as defined in eq. (3.9).

A\B 1 2 PA(a)

3 1/2 1/4 3/4

4 1/6 1/12 1/4

PB(b) 2/3 1/3 1
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Table 3.2 An example of a table of probabilities for random variables that are not independent.

The table is arranged in the same way as Table 3.1.

a\b 1 2 PA(a)

3 0.5 0.25 0.75

4 0.1 0.15 0.25

PB(b) 0.6 0.4 1

Pairwise independence means that the marginal distribution of any pair of random
variables can be written as the product of the marginal distributions of the individual
random variables.

Mutual independence means that the marginal distribution of any subset of random
variables can be written as the product of the marginal distributions of the individual
random variables.

It is obvious that mutual independence implies pairwise independence. Whether
the converse is true is the subject of a problem in this chapter.

3.4 Random Numbers and Functions of Random Variables

Given an arbitrary random variable A = {aj |j = 1, · · ·NA}, we can define a numer-
ical function on the set of elementary events, F = {F (aj)|1, · · · , NA}. The set
of random numbers F , together with their probabilities, is then also a random
number.

If we introduce the Kronecker delta

δx,y =
{

1 x = y
0 x �= y

(3.16)

then we can write the probability distribution of F compactly.

PF (f) =
∑

a

δf,F (a)PA(a) (3.17)

As a simple illustration, consider a random variable that takes on the three values
−1, 0, and 1, with probabilities PA(−1) = 0.2, PA(0) = 0.3, and PA(1) = 0.5. Define
a function F (a) = |a|, so that F takes on the values 0 and 1. The probabilities PF (f)
are found from eq. (3.17).

PF (0) =
1∑

a=−1

δ0,F (a)PA(a) (3.18)

= δ0,F (−1)PA(−1) + δ0,F (0)PA(0) + δ0,F (1)PA(1)

= 0 + P (0) + 0 = 0.3
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PF (1) =
1∑

a=−1

δ1,F (a)PA(a) (3.19)

= δ1,F (−1)PA(−1) + δ1,F (0)PA(0) + δ1,F (1)PA(1)

= PA(−1) + 0 + PA(1) = 0.2 + 0.5 = 0.7

We can also use the Kronecker delta to express arbitrary combinations of random
numbers to form new compound random numbers. For example, if X and Y are random
numbers, and G(x, y) is an arbitrary function, we can define a new random variable,
G. The probability distribution of G is given by a sum over all combinations of the
events of X and Y , with the Kronecker delta picking out the ones that correspond to
particular events of G.

PG(g) =
∑

x

∑
y

δg,G(x,y)P (x, y) (3.20)

A warning is necessary because the limits on the sums in eq. (3.20) have been
suppressed. The only difficult thing about actually doing the sums is in keeping track
of those limits. Since being able to keep track of limits will also be important when
we get to continuous distributions, we will illustrate the technique with the simple
example of rolling two dice and asking for the probability distribution of their sum.

Example: Probability of the Sum of Two Dice

We will assume that the dice are honest, which they tend to be in physics problems, if
not in the real world. Let X = {x|x = 1, 2, 3, 4, 5, 6} be the random number represent-
ing the outcome of the first die, with Y a corresponding random number for rolling
the second die. The sum S = X + Y . The values taken on by S range from 2 to 12.
Since all elementary events are equally likely,

P (x, y) = PX(x)PY (x) =
(

1
6

)(
1
6

)
=

1
36

(3.21)

eq. (3.20) then becomes

P (s) =
1
36

6∑
x=1

6∑
y=1

δs,x+y (3.22)

Do the sum over y first. Its value depends on whether s = x + y for some value of
y, or equivalently, whether s − x is in the interval [1, 6].

6∑
y=1

δs,x+y =
{

1 1 ≤ s − x ≤ 6
0 otherwise (3.23)

This places two conditions on the remaining sum over x. Only those values of x for
which both x ≤ s − 1 and x ≥ s − 6 contribute to the final answer. These limits are
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Table 3.3 Determining the limits for the second sum when evaluating eq. (3.22).

lower limit upper limit

Limits on sum: x ≥ 1 x ≤ 6
From the Kronecker delta: x ≥ s − 6 x ≤ s − 1

More restrictive if s ≤ 7 x ≥ 1 x ≤ s − 1

More restrictive if s ≥ 7 x ≥ s − 6 x ≤ 6

in addition to the limits of x ≤ 6 and x ≥ 1 that are already explicit in the sum on X.
Since all four of these inequalities must be satisfied, we must take the more restrictive
of the inequalities in each case. Which inequality is the more restrictive depends on
the value of s, as indicated in Table 3.3.

For s ≤ 7, the lower bound on x is 1 and the upper bound is s − 1. For s ≥ 7, the
lower bound on x is s − 6 and the upper bound is 6. The sums can then be evaluated
explicitly.

P (s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s−1∑
x=1

1
36

=
s − 1
36

s ≤ 7

6∑
x=s−6

1
36

=
13 − s

36
s ≥ 7

(3.24)

Clearly, even though the probability distribution of both X and Y are uniform, the
probability distribution of S is not. This is an important result. Although we will be
generally assuming a uniform underlying probability distribution for most microscopic
quantities, we will see that the distribution of macroscopic observables will be very
sharply peaked.

It must be admitted that there are easier ways of numerically computing the
probability distribution of the sum of two dice, especially if a numerical result is
required. eq. (3.20) is particularly easy to evaluate in a computer program, since the
Kronecker delta just corresponds to an ‘IF’-statement. However, we will have ample
opportunity to apply the method just described to problems for which it is the simplest
approach. One reason why the example in this section was chosen is that the correct
answer is easy to recognize, which makes the method more transparent.

3.5 Mean, Variance, and Standard Deviation

The mean, or average, of a function F (A), defined on the random variable A, is given by

〈F 〉 ≡
∑

a

F (a)PA(a) (3.25)
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Similarly, the n-th moment of F can be defined as

〈Fn〉 ≡
∑

a

F (a)nPA(a) (3.26)

The n-th central moment is defined by subtracting the mean before taking the
n-th power in the definition.

〈(F − 〈F 〉)n〉 ≡
∑

a

(F (a) − 〈F 〉)n
PA(a) (3.27)

The second central moment plays an important role in statistical analysis and is
called the variance, σ2.

σ2 = 〈(F − 〈F 〉)2〉 =
∑

a

(F (a) − 〈F 〉)2 PA(a) (3.28)

It can also be written as

σ2 = 〈(F − 〈F 〉)2〉 = 〈F 2〉 − 〈F 〉2 (3.29)

The square root of the variance is called the standard deviation.

σ ≡
√

〈F 2〉 − 〈F 〉2 (3.30)

The standard deviation is frequently used as a measure of the width of a probability
distribution.

3.6 Correlation Functions

Suppose we have two random numbers, A and B, and their joint probability distribu-
tion, P (A,B), along with functions F (A) and G(B) defined on the random variables.
F and G are random numbers, and we can ask questions about how they are related.
In particular, we can define a correlation function, fFG.

fFG = 〈FG〉 − 〈F 〉〈G〉 (3.31)

If F and G are independent random numbers, we would expect the correlation
function to vanish, which it does.
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fFG =
∑

a

∑
b

F (a)G(b)P (a, b) (3.32)

−
∑

a

F (a)PA(a)
∑

b

G(b)PB(b)

=
∑

a

∑
b

F (a)G(b)PA(a)PB(b)

−
∑

a

F (a)PA(a)
∑

b

G(b)PB(b)

= 0

3.7 Sets of Independent Random Numbers

Given a set of random numbers {Fj |j = 1, · · · , N}, we are often interested in a new
random number formed by taking the sum.

S =
N∑

j=1

Fj (3.33)

We can easily calculate the mean of the random number S, which is just the sum
of the means of the individual random numbers.

〈S〉 =

〈
N∑

j=1

Fj

〉
=

N∑
j=1

〈Fj〉 (3.34)

If the random numbers are pairwise independent, we can also calculate the variance
and the standard deviation.

σ2
S ≡ 〈S2〉 − 〈S〉2 (3.35)

=
N∑

j=1

N∑
k=1

〈FjFk〉 −
N∑

j=1

〈Fj〉
N∑

k=1

〈Fk〉

=
N∑

j=1

N∑
k=1(k �=j)

〈Fj〉〈Fk〉 +
N∑

j=1

〈F 2
j 〉 −

N∑
j=1

〈Fj〉
N∑

k=1

〈Fk〉

=
N∑

j=1

(〈F 2
j 〉 − 〈Fj〉2

)

=
N∑

j=1

σ2
j
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In this derivation, σ2
j denotes the variance of the j-th random number. We see that

the variance of the sum of a set of pairwise independent random numbers is just the
sum of the variances.

If the random numbers Fj all have the same mean and variance, these equations
simplify further. If 〈Fj〉 = 〈F 〉 for all j, then

〈S〉 =
N∑

j=1

〈Fj〉 = N〈F 〉 (3.36)

Similarly, if σ2
j = σ2 for all j, then

σ2
S =

N∑
j=1

σ2
j = Nσ2 (3.37)

Note that the standard deviation of S grows as the square root of the number of
variables.

σS = σ
√

N (3.38)

On the other hand, the relative standard deviation decreases with the square root of
the number of variables.

σS

〈S〉 =
σ
√

N

N〈F 〉 =
σ

〈F 〉√N
(3.39)

It might be argued that this is the most important result of probability theory for
statistical mechanics. For many applications in statistical mechanics, the appropriate
value of N is 1020 or higher, so that the relative uncertainties for macroscopic
quantities are generally of the order of 10−10 or smaller. This is far smaller than
most experimental errors, leading to predictions with no measurable uncertainty.

3.8 Binomial Distribution

A particularly important case is that of N independent, identically distributed random
numbers, {Fj}, that can each take on the value 1 with probability p and 0 with
probability 1 − p. An example would be N flips of a coin, where the coin might be fair
(p = 0.5) or biased (p �= 0.5).

The mean and variance of each random number are easily seen to be 〈F 〉 = p and
σ2 = p(1 − p). The mean and variance of the sum

S =
N∑

j=1

Fj (3.40)

are then

〈S〉 = pN (3.41)
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and

σ2
S = p(1 − p)N (3.42)

The standard deviation is

σS =
√

p(1 − p)N (3.43)

and the relative standard deviation is

σS

〈S〉 =

√
p(1 − p)N

pN
=

√
1 − p

N
(3.44)

3.8.1 Derivation of the Binomial Distribution

We can go further and calculate the explicit probability distribution P (S) of the sum
of random numbers. This result will be extremely important in the analysis of the
classical ideal gas.

The probability of a specific subset of n random variables taking on the value 1,
while the remaining N − n random variables that take on the value 0 is easily seen
to be

pn(1 − p)N−n (3.45)

To complete the calculation, we only need to determine the number of permutations
of the random variables with the given numbers of 1s and zeros. This number is the
same as the number of ways by which N distinct objects can be put into two boxes,
such that n of them are in the first box and N − n are in the second.

To calculate the number of permutations, first consider the simpler problem of
calculating the number of ways in which N distinct objects can be ordered. Since any
of the N objects can be first, N − 1 can be second, and so on, there are a total of
N ! = N(N − 1)(N − 2) · · · , 2, 1 permutations.

For our problem of putting objects into two boxes, the order of the objects in
each box does not matter. Therefore, we must divide by n! for over counting in the
first box and by (N − n)! for over counting in the second box. The final number of
permutations is known as the binomial coefficient and has its own standard symbol.

(
N

n

)
=

N !
n!(N − n)!

(3.46)

Multiplying by the probability given in eq. (3.45) gives us the binomial distribution.

P (n|N) =
N !

n!(N − n)!
pn(1 − p)N−n =

(
N

n

)
pn(1 − p)N−n (3.47)
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The binomial distribution acquires its name from the binomial theorem, which
states that for any numbers p and q,

(p + q)N =
N∑

n=0

N !
n!(N − n)!

pnqN−n =
N∑

n=0

(
N

n

)
pnqN−n (3.48)

Setting q = 1 − p proves that the binomial distribution in eq. (3.47) is normalized.

3.8.2 Useful Identities for the Binomial Coefficients

Although the evaluation of the binomial coefficients appears to be straightforward,
N ! grows so rapidly as a function of N that the numbers are too large for a direct
application of the definition. For example, a popular spreadsheet overflows at N = 171,
and my hand calculator cannot even handle N = 70.

On the other hand, the binomial coefficients themselves do not grow very rapidly
with N . The following identities, which follow directly from eq. (3.46), allow us to
calculate the binomial coefficients for moderately large values of n and N without
numerical difficulties.

(
N

0

)
=
(

N

N

)
= 1 (3.49)

(
N − 1

n

)
+
(

N − 1
n − 1

)
=
(

N

n

)
(3.50)

(
N

n + 1

)
=

N − n

n + 1

(
N

n

)
(3.51)

The proofs of these identities will be left as exercises.

3.9 Gaussian Approximation to the Binomial Distribution

For a fixed value of p and large values of N , the binomial distribution can be
approximated by a Gaussian function. This is known as the central limit theorem.
We will not prove it, but we will show how to determine the appropriate parameters
in the Gaussian approximation.

Consider a general Gaussian function.

g(x) =
1√

2πσ2
exp
[
− (x − xo)2

2σ2

]
(3.52)

The mean and the location of the maximum coincide.

〈x〉 = xo = xmax (3.53)
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The variance is given by the second central moment.

〈
(x − xo)

2
〉

=
1√

2πσ2

∫ ∞

−∞
(x − xo)

2 exp
[
− (x − xo)2

2σ2

]
dx (3.54)

=
1√

2πσ2

∫ ∞

−∞
y2 exp

[
− y2

2σ2

]
dy

=
1√

2πσ2

√
π[2σ2]3/2

=
1√

2πσ2

√
π
√

2σ2σ2

= σ2

It is now easy to find a Gaussian approximation to the binomial distribution, since
both the mean and the variance are known exactly from eqs. (3.41) and (3.42).

〈n〉 = pN (3.55)

and

σ2 = p(1 − p)N (3.56)

A Gaussian function with this mean and variance gives a good approximation to
the binomial distribution for sufficiently large n and N .

P (n|N) ≈ 1√
2πp(1 − p)N

exp
[
− (n − pN)2

2p(1 − p)N

]
(3.57)

How large n and N must be for eq. (3.57) to be a good approximation will be left as
a numerical exercise.

3.10 A Digression on Gaussian Integrals

To derive a good approximation for N ! that is practical and accurate for values of N
as large as 1020, we need to develop another mathematical tool: Gaussian integrals.

Gaussian integrals are so important in statistical mechanics that they are well
worth a slight detour. Although the formulas derived in this section can be found
wherever fine integrals are sold, a student of statistical mechanics should be able to
evaluate Gaussian integrals without relying on outside assistance.

The first step in evaluating the integral

G =
∫ ∞

−∞
e−ax2

dx (3.58)

will later prove to be very useful in non-Gaussian integrals later in the book because
we sometimes only need the dependence of the integral on the parameter a.
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Make the integral in eq. (3.58) dimensionless by the transformation y = x
√

a.

G =
1√
a

∫ ∞

−∞
e−y2

dy (3.59)

Note that the dependence on the parameter a appears as a simple factor in front of
the integral.

To evaluate the dimensionless integral, we square it and recast the product as a
two-dimensional integral.

G2 =
1√
a

∫ ∞

−∞
e−x2

dx
1√
a

∫ ∞

−∞
e−y2

dy (3.60)

=
1
a

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dx dy

=
1
a

∫ ∞

0

e−r2
2πr dr

=
π

a

[
−e−r2

]∞
0

=
π

a

The value of a Gaussian integral is therefore:∫ ∞

−∞
e−ax2

dx =
√

π

a
(3.61)

3.11 Stirling’s Approximation for N !

As mentioned above, a difficulty in using the binomial distribution is that N ! becomes
enormously large when N is even moderately large. For N = 25, N ! ≈ 1.6 × 1025, and
we need to consider values of N of 1020 and higher! We would also like to differentiate
and integrate expressions for the probability distribution, which is inconvenient in the
product representation.

The problem is solved by Stirling’s approximation, which is valid for large
numbers—exactly the case in which we are interested. We will discuss various levels
of Stirling’s approximation, beginning with the simplest.

3.11.1 The Simplest Version of Stirling’s Approximation

Consider approximating lnN ! by an integral.

lnN ! = ln

(
N∏

n=1

n

)
=

N∑
n=1

ln(n) ≈
∫ N

1

ln(x)dx = N lnN − N + 1 (3.62)

This is equivalent to the approximation

N ! ≈ NN exp(1 − N) (3.63)
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3.11.2 A Better Version of Stirling’s Approximation

A better approximation can be obtained from an exact integral representation of N !.

N ! =
∫ ∞

0

e−xxNdx (3.64)

The correctness of eq. (3.64) can be shown by induction. It is clearly true for N = 0,
since 0! = 1 =

∫∞
0

e−xdx. If it is true for a value N , then using integration by parts
we can then prove that it is true for N + 1.

(N + 1)! =
∫ ∞

0

e−xxN+1dx (3.65)

=
[−e−xxN+1

]∞
0

−
∫ ∞

0

(−e−x(N + 1)xN
)
dx

= (N + 1)N !

The integral in eq. (3.64) can be approximated by noting that the integrand is
sharply peaked for large values of N . This suggests using the method of steepest
descent, which involves approximating the integrand by a Gaussian function of the
form

g(x) = A exp
[
− (x − xo)2

2σ2

]
(3.66)

where A, xo, and σ are constants that must be evaluated.
We can find the location of the maximum of the integrand in eq. (3.64) by setting

the first derivative of its logarithm equal to zero. For the Gaussian function, this gives

d

dx
ln g(x) =

d

dx

[
lnA − (x − xo)2

2σ2

]
= − (x − xo)

σ2
= 0 (3.67)

or x = xo.
Comparing eq. (3.67) to the first derivative of the logarithm of the integrand in

eq. (3.64) equal to zero, we find the location xo of the maximum

0 =
d

dx
[−x + N lnx] = −1 +

N

x
(3.68)

or x = xo = N . The value of the amplitude is then just the integrand in eq. (3.64),
e−xxN evaluated at x = xo = N , or A = e−NNN .

The second derivative of the logarithm of a Gaussian function tells us the value of
the variance.

d2

dx2
ln g(x) =

d

dx

[
− (x − xo)

σ2

]
= − 1

σ2
(3.69)

When using this method of evaluating the variance of a Gaussian approximation,
the second derivative of the logarithm of the function being approximated should be
evaluated at xo.
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Table 3.4 Comparison of different levels of Stirling’s approximation with exact results for

N ! ‘Stirling (simple)’ refers to eq. (3.63), ‘Stirling (improved)’ to eq. (3.72), and ‘Gosper’ to

eq. (3.73).

N N! Stirling error Stirling error Stirling error
(simple) (improved) (Gosper)

1 1 1 0% 0.922 –7.79% 0.996 –0.398%
2 2 1.47 –26% 1.919 –4.05% 1.997 –0.132%
3 6 3.65 –39% 5.836 –2.73% 5.996 –0.064%
4 24 12.75 –47% 23.506 –2.06% 23.991 –0.038%
5 120 57.24 –52% 118.019 –1.65% 119.970 –0.025%

10 3628800 1234098 –66% 3598694 –0.83% 3628559 –0.007%
20 2.43 × 1018 5.87 × 1017 –76% 2.43 × 1018 –0.42% 2.43 × 1018 -0.002%

To find the value of σ2, take the second derivative of the logarithm of the integrand
in eq. (3.64).

− 1
σ2

=
d2

dx2
[−x + N lnx] =

d2

dx2
[−1 +

N

x
] = −N

x2
(3.70)

or

σ2 =
x2

o

N
= N (3.71)

We can now use the formula for a Gaussian integral derived in Section 3.10.

N ! =
∫ ∞

0

e−xxNdx ≈
∫ ∞

0

e−NNN exp
[
− (x − N)2

2N

]
dx ≈ e−NNN

√
2πN (3.72)

As can be seen in Table 3.4, eq. (3.72) is a considerable improvement over eq. (3.63).

The procedure used in this section to approximate a sharply peaked function by a
Gaussian is extremely useful in statistical mechanics because a great many functions
encountered are of this form.

3.11.3 Gosper’s Approximation

Finally, we mention a very interesting variant of Stirling’s approximation due to
Gosper.1

N ! ≈ e−NNN

√(
2N +

1
3

)
π (3.73)

1Cited in http://mathworld.wolfram.com/StirlingsApproximation.html
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Table 3.4 shows that Gosper’s approximation is extremely good, even for very small
values of N .

3.11.4 Using Stirling’s Approximation

In applications to statistical mechanics, we are most often interested in the logarithm
of the probability distribution, and consequently in lnN !. This has the curious
consequence that the simplest form of Stirling’s approximation is by far the most
useful, even though Table 3.4 shows that its accuracy for N ! is very poor for large N .

From Gosper’s approximation, we have a very accurate equation for lnN !.

lnN ! ≈ N lnN − N +
1
2

ln
[(

2N +
1
3

)
π

]
(3.74)

In statistical mechanics we are most interested in large values of N , ranging from
perhaps 1012 to 1024. The relative error in using the simplest version of Stirling’s
approximation, lnN ! ≈ N lnN − N , is of the order of 1/N , which is completely
negligible even if N is as ‘small’ as 1012. For N = 1024, lnN ! ≈ N lnN − N is one
of the most accurate approximations in physics.

3.12 Binomial Distribution with Stirling’s Approximation

Since the last term in eq. (3.74) is negligible for large values of N , the most common
approximation is to keep only the first two terms. If we use this form of Stirling’s
formula, we can write the binomial distribution in eq. (3.47) in an approximate but
highly accurate form.

P (n|N) =
N !

n!(N − n)!
pn(1 − p)N−n (3.75)

lnP (n|N) ≈ N lnN − n ln n − (N − n) ln(N − n) (3.76)

+n ln p + (N − n) ln(1 − p)

Note that the contributions from the second term in Stirling’s approximation in
eq. (3.74) cancel in eq. (3.76).

Using Stirling’s approximation to the binomial distribution turns out to have a
number of pleasant features. We know that the binomial distribution will be peaked,
and that its relative width will be small. We can use Stirling’s approximation to find the
location of the peak by treating n as a continuous variable and setting the derivative
of the logarithm of the probability distribution with respect to n in eq. (3.47) equal
to zero.

∂

∂n
lnP (n|N) = 0 (3.77)
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or

0 =
∂

∂n
[lnN ! − lnn! − ln(N − n)! + n ln p + N − n ln(1 − p)]

=
∂

∂n
[N lnN − N − n lnn − n − (N − n) ln(N − n) − (N − n)

+n ln p + N − n ln(1 − p)]

= − lnn + ln(N − n) + ln ps − ln(1 − p) (3.78)

This equation determines the location no of the maximum probability from the
equation:

no

N − no
=

p

1 − p
(3.79)

which has the solution

no = pN (3.80)

This means that the location of the peak, within the simplest of Stirling’s approxima-
tions, gives the exact value of 〈n〉 = pN .

3.13 Problems

Sample program to simulate rolling a single die

The computer program supplied first asks you how many times you want to roll a
single die. It then chooses a random integer between 1 and 6, records its value, and
repeats the process until it has chosen the number of random integers you specified.
It then prints out the number of times each integer occurred and quits.

The following VPython code is for the program OneDie PARTIAL.py.

from v i s u a l import *
from v i s u a l . graph import *
import random
import sys
from types import *
from time import c lock , time

t r i a l s = 100
print ( ” Number o f t r i a l s = ” , t r i a l s )

s i d e s = 6
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histogram = ze ro s ( s ide s , i n t )
print ( histogram )

sum = 0.0
j=0
r=0

while j < t r i a l s :
r = in t ( random . random ( ) * s i d e s )
histogram [ r ] = histogram [ r ] + 1
j=j+1

j=0
while j < s i d e s :

print ( histogram [ j ] , histogram [ j ] − t r i a l s / s i d e s )
j=j+1

Problem 3.1

Rolling a die with a computer

For this problem, either modify the VPython program (OneDie PARTIAL.py) sup-
plied, or write your own from scratch, using whatever computer language you
prefer.

1. Write a program (or modify the one given) to calculate and print out the
histogram of the number of times each side occurs, the deviation of this number
from one-sixth of the number of trials, the frequency with which each side occurs,
and the deviation of this from one sixth. Hand in a copy of the code you used.

2. Show a typical print-out of your program.
3. Run the program for various numbers of random integers, starting with a small

number, say 10, and increasing to a substantially larger number. The only upper
limit is that the program should not take more than about one second to run.
([Your time is valuable.)
THIS IS A COMPUTATIONAL PROBLEM.
ANSWERS MUST BE ACCOMPANIED BY DATA.
Please hand in hard copies for all data to which you refer in your answers.

4. As the number of trials increases, does the magnitude (absolute value) of the
differences between the number of times a given side occurs and one-sixth of the
number of trials increase or decrease?
(Hint: This is not the same question as the next one.)

5. As you increase the number of trials, does the ratio of the number of times each
side occurs to the total number of trials approach closer to 1/6?
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Problem 3.2

Mutual independence

We defined the concept of pairwise independence in this chapter. There is a related
concept called mutual independence. Consider the set of random variables

{Aj |j = 1, . . . , N}
They are said to be mutually independent if for any subset of {Aj} containing n of
these random variables, the marginal distribution satisfies the condition

Pi,j,...,n(ai, aj , ak, . . . , an) = Pi(ai)Pj(aj)Pk(ak) · · ·Pn(an)

Obviously, mutual independence implies pairwise independence. The question is
whether pairwise independence implies mutual independence.
Provide a proof or a counter-example.

Problem 3.3

A die with an arbitrary number of sides

Suppose we have a die with S sides, where S is an integer, but not necessarily equal
to 6. The set of possible outcomes is then {n|n = 1, . . . , S} (or {n|n = 0, . . . , S − 1},
your choice). Assume that all sides of the die are equally probable, so that P (n) = 1/S.

Since this is partly a computational problem, be sure to support your answers with
data from your computer simulations.

1. What are the theoretical values of the mean, variance, and standard deviation as
functions of S? The answers should be in closed form, rather than expressed as
a sum (Hint: It might be helpful to review the formulas for the sums of integers
and squares of integers.)

2. Modify the program you used for an earlier problem to simulate rolling a die with
S sides, and print out the mean, variance, and standard deviation for a number
of trials. Have the program print out the theoretical predictions in each case, as
well as the deviations from theory to facilitate comparisons.

3. Run your program for two different values of S. Are the results for the mean,
variance, and standard deviation consistent with your predictions?
(Do not use such long runs that the program takes more than about a sec-
ond to run. It would be a waste of your time to wait for the program to
finish.)

4. Experiment with different numbers of trials. How many trials do you need to
obtain a rough estimate for the values of the mean and standard deviation?
How many trials do you need to obtain an error of less than 1%? Do you need
the same number of trials to obtain 1% accuracy for the mean and standard
deviation?
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Problem 3.4

Independence and correlation functions

We have shown that if the random variables A and B were independent and F (A)
and G(B) were numerical functions defined on A and B, then

〈F (A)G(B)〉 = 〈F (A)〉〈G(B)〉

Suppose have two random numbers, X and Y , and we know that:

〈XY 〉 = 〈X〉〈Y 〉

Does that imply that X and Y are independent?
Provide a proof or counter-example.

Problem 3.5

Some probability calculations (the Chevalier de Méré’s problem)

1. Suppose we roll an honest die ten times. What is the probability of not finding
a ‘3’ on any of the rolls.

2. Calculate the following probabilities and decide which is greater.

The probability of finding at least one ‘6’ on four rolls is greater than the probability
of finding at least one ‘double 6’ on 24 rolls of two dice.

Historical note:

This is a famous problem, which is attributed to the French writer Antoine Gom-
baud (1607–1684), who called himself the Chevalier de Méré (although according
to Wikipedia he was not a nobleman). He was an avid but not terribly successful
gambler, and he enlisted his friend Blaise Pascal (French mathematician, 1623–1662)
to calculate the correct odds to bet on the dice rolls, described above. Pascal’s solution
was one of the early triumphs of probability theory.

Problem 3.6

Generalized dice

1. Modify your computer program to simulate the roll of N dice. Your program
should let the dice have any number of sides, but the same number of sides for
each die. The number of dice and the number of sides should be read in at the
start of the program.

One trial will consist of N rolls. Your program should calculate the sum of
the N numbers that occur during each trial. It should also compare the results
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for the mean, variance, and standard deviation of that sum with the theoretical
predictions.

2. Test the calculations that we have carried out for the mean, variance, and
standard deviation of the sum of the numbers on the dice. In each case, obtain
data for a couple of different run-lengths.
Investigate the cases listed below.
(a) Two dice, each with ten sides.
(b) Ten dice, each with twenty sides.

3. Use your program to investigate the width of the distribution for various numbers
of two-sided dice. Does the width of the distribution increase or decrease with
increasing numbers of dice? Do your results agree with the theory?

Problem 3.7

Mismatched dice

In class, we derived the probability distribution for the sum of two dice using Kronecker
deltas, where each die had S sides.

For this problem, calculate the probability distribution for the sum of two dice
using Kronecker deltas, when one die has four sides, and the other has six sides.

Problem 3.8

Computer simulations of mismatched dice
1. Write a computer program to compute the probability distribution for the sum

of two dice when each die has an arbitrary number of sides.
Run your program for dice of four and six sides.

2. Modify the computer program you wrote for the previous problem to compute the
probability distribution for the sum of three dice when each die has an arbitrary
number of sides.

Run your program once for all dice having six sides, and once for any
combination you think is interesting.

Problem 3.9

Sums of 0s and 1s

The following questions are directly relevant to the distribution of ideal-gas particles
between two boxes of volume VA and VB . If V = VA + VB, then p = VA/V and 1 − p =
VB/V .

1. Prove the following identity for binomial coefficients.(
N

n + 1

)
=

N − n

n + 1

(
N

n

)
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2. Modify a new copy of your program to simulate the addition of an arbitrary
number of independent random numbers, {nj |j = 1, . . . , N}, each of which can
take on the value 1 with probability P (1) = p and 0 with probability P (0) = 1 − p.

Have the program print the histogram of values generated. (To save paper,
print only the non-zero parts of the histograms.)

Include a calculation of the theoretical probability from the binomial distri-
bution, using the identity you proved at the beginning of this assignment. Have
your program calculate the mean, variance, and standard deviation, and compare
them to the theoretical values that we have calculated in class.

Have the program plot the theoretical prediction for the histogram on the
same graph as your histogram. Plot the deviations of the simulation data from
the theoretical predictions on the second graph. (A discussion of how to make
plots in VPython is included in Section 4 of the Appendix.)

3. Run your program for the following cases, using a reasonable number of trials.
Comment on the agreement between the theory and your computer experiment.
1. N = 10, p = 0.5
2. N = 30, p = 0.85
3. N = 150, p = 0.03

Problem 3.10

Sums of 0s and 1s revisited: the Gaussian approximation

1. Modify the program you used for the simulation of sums of 0s and 1s to include
a calculation of a Gaussian approximation to the binomial distribution.

Keep the curve in the first graph that shows the theoretical binomial proba-
bilities, but add a curve representing the Gaussian approximation in a contrasting
color.

Modify the second graph in your program to plot the difference between the
full binomial approximation and the Gaussian approximation.

2. Run simulations for various values of the probability p and various numbers of
‘dice’, with a sufficient number of trials to obtain reasonable accuracy. (Remember
not to run it so long that it wastes your time.)

Comment on the accuracy (or lack thereof) of the Gaussian approximation.
3. Run your program for the following cases, using a reasonable number of trials.

Comment on the agreement between the theory and your computer experiment.
1. N = 10, p = 0.5
2. N = 30, p = 0.85
3. N = 150, p = 0.03

Problem 3.11

The Poisson distribution

We have derived the binomial distribution for the probability of finding n particles
in a subvolume out of a total of N particles in the full system. We assumed that the
probabilities for each particle were independent and equal to p = VA/V .



Problems 39

When you have a very large number N of particles with a very small probability p,
you can simplify this expression in the limit that p → 0 and N → ∞, with the product
fixed at pN = μ. The answer is the Poisson distribution.

Pμ(n) =
1
n!

μn exp(−μ)

Derive the Poisson distribution from the binomial distribution.
(Note that Stirling’s formula is an approximation, and should not be used in a

proof.)
Calculate the mean, variance, and standard deviation for the Poisson distribution

as functions of μ.

Problem 3.12

Numerical evaluation of the Poisson distribution

In an earlier problem you derived the Poisson distribution.

Pμ(n) =
1
n!

μn exp(−μ)

1. Modify (a copy of) your program to read in the values of μ and N and calculate
the value of the probability p. Include an extra column in your output that gives
the theoretical probability based on the Poisson distribution.
(Note: It might be quite important to suppress rows in which the histogram is
zero. Otherwise, the print-out could get out of hand for large values of N .)

2. Run your program for various values of μ and N . How large does N have to be
for the agreement to be good?
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The Classical Ideal Gas:
Configurational Entropy

S = k log W
Inscription on Boltzmann’s tombstone

(first written in this form by Max Planck in 1900)

This chapter begins the derivation of the entropy of the classical ideal gas, as outlined
in Chapter 2. The first step is to separate the calculation of the entropy into two parts:
one for the contributions of the positions of the particles, and one for the contributions
of their momenta. In an ideal gas, these are assumed to be independent. As we will
see, the total entropy is then just the sum of the two contributions.

The contributions of the probability distribution for the positions of the particles,
which we will call the configurational entropy, will be calculated in this chapter.

4.1 Separation of Entropy into Two Parts

The assumption that the positions and momenta of the particles in an ideal gas are
independent allows us to consider each separately.

As we saw in Section 3.3, the independence of the positions and momenta means
that their joint probability can be expressed as a product of functions of q and p
alone.

P (q, p) = Pq(q)Pp(p) (4.1)

According to Boltzmann’s 1877 definition, the entropy is proportional to the
logarithm of the probability, to within additive and multiplicative constants. Since
eq. (4.1) shows that the probability distribution in phase space can be expressed as
a product, the total entropy will be expressed as a sum of the contributions of the
positions and the momenta.

The probability distribution in configuration space, Pq(q), depends only on the
volume V and the number of particles, N . Consequently, the configurational entropy,
Sq, depends only on V and N ; that is, Sq = Sq(V,N).

The probability distribution in momentum space, Pp(p), depends only on the
total energy, E, and the number of particles, N . Consequently, the energy-dependent
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contribution to the entropy from the momenta, Sp, depends only on E and N ; that
is, Sp = Sp(E,N).

The total entropy of the ideal gas is given by the sum of the configurational and
the energy-dependent terms.

Stotal(E, V,N) = Sq(V,N) + Sp(E,N) (4.2)

The thermodynamic quantities E, V , and N are referred to as ‘extensive’ para-
meters (or observables, or variables) because they measure the amount, or extent, of
something. They are to be contrasted with ‘intensive’ parameters, such as temperature
or pressure, which do not automatically become bigger for bigger systems.

4.2 Distribution of Particles between Two Subsystems

Let us consider a composite system consisting of two boxes (or subsystems) containing
a total of N distinguishable, non-interacting particles. We will name the boxes A
and B, with volumes VA and VB . The total volume is V = VA + VB. The number of
particles in A is NA, with NB = N − NA being the number of particles in B.

We can either constrain the number of particles in each box to be fixed, or allow
the numbers to fluctuate by making a hole in the wall that separates the boxes. The
total number of particles N is constant in either case.

We are interested in the probability distribution for the number of particles in each
subsystem after the constraint (impenetrable wall) is released (by removing the wall
or making a hole in it).

In keeping with our intention of making the simplest reasonable assumptions about
the probability distributions of the configurations, we will assume that the positions
of the particles are not only independent of the momenta, but are also mutually
independent of each other. The probability density Pq(q) can then be written as a
product.

Pq(q) = PN ({�rj}) =
N∏

j=1

P1(�rj) (4.3)

If we further assume that a given particle is equally likely to be anywhere in the
composite system, the probability of it being in subsystem A is VA/V .1

Remember that this is an assumption that could, in principle, be tested with
repeated experiments. It is not necessarily true. However, we are strongly prejudiced
in this matter. If we were to carry out repeated experiments and find that a particular
particle was almost always in subsystem A, we would probably conclude that there is
something about the system that breaks the symmetry.

The assumption that everything we do not know is equally probable—subject to
the constraints—is the simplest assumption we can make. It is the starting point for
all statistical mechanics. Fortunately, it provides extremely good predictions.

1This can be shown more formally after the discussion of continuous random variables in Chapter 5.
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If there are N particles that are free to go back and forth between the two
subsystems, the probability distribution of NA is given by the binomial distribution,
eq. (3.47), as discussed in Section 3.8.

P (NA|N) =
N !

NA!(N − NA)!

(
VA

V

)NA
(

1 −
(

VA

V

))N−NA

(4.4)

=
(

N

NA

) (
VA

V

)NA
(

1 −
(

VA

V

))N−NA

(4.5)

To emphasize the equal standing of the two subsystems, it is often useful to write this
equation in the symmetric form:

P (NA, NB) =
N !

NA!NB !

(
VA

V

)NA
(

VB

V

)NB

, (4.6)

with the constraint that NA + NB = N .

4.3 Consequences of the Binomial Distribution

As shown in Section 3.7, the average value of NA from the binomial distribution is

〈NA〉 = N

(
VA

V

)
(4.7)

By symmetry, we also have

〈NB〉 = N

(
VB

V

)
(4.8)

so that

〈NA〉
VA

=
〈NB〉
VB

=
N

V
(4.9)

The width of the probability distribution for NA is given by the standard deviation.

δNA =
[
N

(
VA

V

)(
1 − VA

V

)]1/2

(4.10)

=
[
N

(
VA

V

)(
VB

V

)]1/2

=
[
〈NA〉

(
VB

V

)]1/2

By a fortunate quirk in the mathematics, the average value 〈NA〉 has exactly the
same value as the location of the maximum of the approximate probability density
using Stirling’s approximation, P (NA, N − NA). This turns out to be extremely
convenient.
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4.4 Actual Number versus Average Number

It is important to make a clear distinction between the actual number of particles NA

at any given time and the average number of particles 〈NA〉.
The actual number of particles, NA, is a property of the system. It is an integer,

and it fluctuates with time.
The average number of particles, 〈NA〉, is part of a description of the system and

not a property of the system itself. It is not an integer, and is time-independent.
The magnitude of the fluctuations of the actual number of particles is given by

the standard deviation, δNA, which is of the order of
√〈NA〉 from eq. (4.10). If there

are about 1020 particles in subsystem A, the actual number of particles NA will fluc-
tuate around the value 〈NA〉 by about δNA ≈ 1010 particles. The numerical difference
between NA and 〈NA〉 is very big—and it becomes even bigger for bigger systems!

Given the large difference between NA and 〈NA〉, why is 〈NA〉 at all useful?
The answer lies in the fact that macroscopic measurements do not count individual
molecules. The typical method used to measure the number of molecules is to weigh the
sample and divide by the weight of a molecule. The weight is measured experimentally
with some relative error—usually between 1% and one part in 105. Consequently,
using 〈NA〉 as a description of the system is good whenever the relative width of the
probability distribution, δNA/〈NA〉, is small.

From eq. (4.7), the relative width of the probability distribution is given by

δNA

〈NA〉 =
1

〈NA〉
[
〈NA〉

(
VB

V

)]1/2

=

√
1

〈NA〉

√
VB

V
(4.11)

The relative width is proportional to 1/
√〈NA〉, which becomes very small for a

macroscopic system. For 1020 particles, the relative uncertainty in the probability dis-
tribution is about 10−10, which is much smaller than the accuracy of thermodynamic
experiments.

In the nineteenth century, as thermodynamics was being developed, the atomic
hypothesis was far from being accepted. Thermodynamics was formulated in terms of
the mass of a sample, rather than the number of molecules—which in any case, many
scientists did not believe in. Fluctuations were not seen experimentally, so scientists
did not make a distinction between the average mass in a subsystem and the actual
mass.

Maintaining the distinction between NA and 〈NA〉 is made more difficult by the
common tendency to use a notation that obscures the difference. In thermodynamics,
it would be more exact to use 〈NA〉 and similar expressions for the energy and
other observable quantities. However, it would be tiresome to continually include
the brackets in all equations, and the brackets are invariably dropped. We will also
follow this practice in the chapters on thermodynamics, although we will maintain the
distinction in discussing statistical mechanics.

Fortunately, it is fairly easy to remember the distinction between the actual energy
or number of particles in a subsystem and the average values, once the distinction has
been recognized.
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4.5 The ‘Thermodynamic Limit’

It is sometimes said that thermodynamics is only valid in the limit of infinite system
size. This is implied by the standard terminology, which defines the ‘thermodynamic
limit’ as the limit of infinite size while holding the ratio of the number of particles to
the volume fixed.

An obvious difficulty with such a point of view is that we only carry out experiments
on finite systems, which would imply that thermodynamics could never apply to the
real world.

Another difficulty with restricting thermodynamics to infinite systems is that the
finite-size effects due to containers, surfaces, and interfaces are lost.

The point of view taken in this book is that thermodynamics is valid in the real
world when the uncertainties due to statistical fluctuations are much smaller than the
experimental errors in measured quantities. For macroscopic systems containing 1020

or more molecules, this means that the statistical uncertainties are of the order 10−10

or less, which is several orders of magnitude smaller than typical experimental errors.
Even if we consider colloids with about 1012 particles, the statistical uncertainties are
about 10−6, which is still smaller than most measurements.

Taking the limit of infinite system size can be a very useful mathematical approx-
imation, especially when studying phase transitions, but it is not essential to either
understand or apply thermodynamics.

4.6 Probability and Entropy

We have seen that the equilibrium value of 〈NA〉 is determined by the maximum of
the probability distribution given by

P (NA, NB) =
N !

NA!NB!

(
VA

V

)NA
(

VB

V

)NB

(4.12)

with the constraint that NA + NB = N . We can show the dependence of eq. (4.12) on
the composite nature of the total system by introducing a new function:

Ωq (N,V ) =
V N

N !
(4.13)

This allows us to rewrite eq. (4.12) as

P (NA, NB) =
Ωq (NA, VA) Ωq (NB , VB)

Ωq (N,V )
(4.14)

At this point we are ready to make an extremely important observation. Since
the logarithm is a monotonic function of its argument, the maximum of P (NA, NB)
and the maximum of ln [P (NA, NB)] occur at the same values of NA and NB . Using
ln [P (NA, NB)] turns out to be much more convenient than using P (NA, NB), partly
because we can divide it naturally into three distinct terms.
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ln [P (NA, NB)] = ln

[
V NA

A

NA!

]
+ ln

[
V NB

B

NB!

]
− ln
[
V N

N !

]
(4.15)

= ln Ωq (NA, VA) + ln Ωq (NB , VB) − ln Ωq (N,V )

The first term on the right (in both forms of this equation) depends only on the
variables for subsystem A, the second depends only on the variables for subsystem B,
and the third term depends only on the variables for the total composite system.

It will also be convenient to define a function

Sq (N,V ) ≡ k ln
(

V N

N !

)
+ kXN (4.16)

≡ k ln Ωq (N,V ) + kXN (4.17)

where k and X are both (at this point) arbitrary constants. The maximum of the
function

Sq,tot (NA, VA, NB , VB) = k ln [P (NA, NB)] + Sq (N,V ) (4.18)

= Sq (NA, VA) + Sq (NB , VB)

with the usual constraint that NA + NB = N , then gives us the location of the
equilibrium value of the average number of particles 〈NA〉.

We have seen in Section 3.8 that the width of the probability distribution is
proportional to

√〈NA〉. Since the probability distribution is normalized, the value
of its peak must be proportional to 1/

√〈NA〉. This can also be seen from the gaussian
approximation in eq. (3.57), with pN → 〈NA〉, and 1 − p → VB/V . At the equilibrium
values of NA and NB, this gives

lnP (NA, NB)|equil ≈ −1
2

ln (2π〈NA〉(VB/V )) (4.19)

Since the function Sq (N,V ) is of order N , and N > 〈NA〉 >> ln〈NA〉, the term
k ln [P (NA, NB)] in eq. (4.18) is completely negligible at the equilibrium values of
NA and NB . Therefore, in equilibrium, we have

Sq,tot (NA, VA, NB , VB) = Sq (NA, VA) + Sq (NB , VB) = Sq (N,V ) (4.20)

We can now identify Sq,tot (NA, VA, NB, VB) as the part of the entropy of the
composite system that is associated with the configurations; that is, with the positions
of the particles. We will call Sq,tot (NA, VA, NB , VB) the total configurational entropy
of the composite system. The functions Sq (NA, VA) and Sq (NB, VB) are called the
configurational entropies of subsystems A and B.

We have therefore found functions of the variables of each subsystem, such that
the maximum of their sum yields the location of the equilibrium values

Sq,tot (NA, VA, NB , VB) = Sq (NA, VA) + Sq (NB , VB) (4.21)

subject to the usual constraint that NA + NB = N .
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The fact that the contributions to the configurational entropy from each subsystem
are simply added to find the configurational entropy of the composite system is a very
important property. It is traditionally known, reasonably enough, as ‘additivity’. On
the other hand, the property might also be called ‘separability’, since we first derived
the entropy of the composite system and were then able to separate the expression
into the sum of individual contributions from each subsystem.

The function that we have identified as the configurational entropy follows Boltz-
mann’s definition (see Section 2.5) in being the logarithm of the probability (within
additive and multiplicative constants). The fact that it is maximized at equilibrium
agrees with Boltzmann’s intuition. This turns out to be the most important property
of the entropy in thermodynamics, as we will see in Chapter 9.

Boltzmann’s definition of the entropy always produces a function that has its
maximum at equilibrium. Anticipating the discussion of the laws of thermodynamics
in Part II, this property is equivalent to the Second Law of Thermodynamics, which
we have therefore derived from statistical principles.2

4.7 An Analytic Approximation for the Configurational Entropy

The expression for the configurational entropy becomes much more practical if we
introduce Stirling’s approximation from Section 3.11. The entropy can then be dif-
ferentiated and integrated with standard methods of calculus, as well as being much
easier to deal with numerically.

Because we are interested in large numbers of particles, only the simplest version
of Stirling’s approximation is needed: lnN ! ≈ N lnN − N . The relative magnitude of
the correction terms is only of the order of lnN/N , which is completely negligible. It
is rare to find an approximation quite this good, and we should enjoy it thoroughly.

Using Stirling’s approximation, our expression for the configurational entropy
becomes

Sq (N,V ) ≈ kN

[
ln
(

V

N

)
+ X

]
(4.22)

where k and X are still arbitrary constants. In Chapter 8 we will discuss further
constraints that give them specific values.

This is our final result for the configurational entropy of the classical ideal gas. It
will be supplemented in Chapter 6 with contributions from the momentum terms in
the Hamiltonian. But first, we need to develop mathematical methods to deal with
continuous random variables, which we will do in the next chapter.

2There is still the matter of the nature of irreversibility, which will be addressed in Chapter 21.



5

Continuous Random Numbers

Never try to walk across a river just because it has an average depth of four
feet.

Martin Friedman

5.1 Continuous Dice and Probability Densities

In Chapter 3 we discussed the basics of probability theory for discrete events. However,
the components of the momenta of the particles in the ideal gas are continuous
variables. This requires an extension of probability theory to deal with continuous
random numbers, which we will develop in this chapter.

To illustrate the essential features of continuous random numbers we will use a
simple generalization of throwing a die. While a real die has six distinct sides, our
continuous die can take on any real value, x, between 0 and 6.

Assume that our continuous die is ‘honest’ in the sense that all real numbers
between 0 and 6 are equally probable. Since there is an infinite number of possibilities,
the probability of any particular number being found is p = 1/∞ = 0.

On the other hand, if we ask for the probability of the continuous random number
x being in some interval, the probability can be non-zero. If all values of x are equally
probable, we would assume that the probability of finding x in the interval [a, b] is
proportional to the length of that interval.

P ([a, b]) = A

∫ b

a

dx = A(b − a) (5.1)

where A is a normalization constant. Since the probability of x being somewhere in
the interval [0, 6] must be 1,

P ([0, 1]) = A

∫ 6

0

dx = 6A = 1 (5.2)

we have A = 1/6.
This leads us to define a ‘probability density function’ or simply a ‘probability

density’, P (x) = 1/6, to provide us with an easy way of computing the probability of
finding x in the interval [a, b].
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P ([a, b]) =
∫ b

a

P (x)dx =
∫ b

a

1
6
dx =

b − a

6
(5.3)

I apologize for using P to denote both probabilities and probability densities, even
though they are very different things. This confusing notation certainly does not
help keep the distinction between the two concepts in mind. On the other hand,
it is usually easy to tell which concept is intended. Since much of the literature
assumes that the reader can figure it out, this is probably a good place to become
accustomed to doing so.

5.2 Probability Densities

We can use the idea of a probability density to extend consideration to cases in which
all values of a continuous random number are not equally likely. The only change is
that P (x) is then no longer a constant. The probability of finding x in an interval is
given by the integral over that interval.

P ([a, b]) =
∫ b

a

P (x)dx (5.4)

Generalization to multiple dimensions is simply a matter of defining the probability
density of a multidimensional function. If there are two continuous random numbers,
x and y, the probability density is P (x, y).

There is one feature of probability densities that might not be clear from our
example of continuous dice. In general, although probabilities are dimensionless,
probability densities have units. For example, if the probability of finding a single
classical particle is uniform in a box of volume V , the probability density is

P (x, y, z) =
1
V

(5.5)

and it has units of [m−3]. When the probability density is integrated over a sub-volume
of the box, the result is a dimensionless probability, as expected.

Because probability densities have units, there is no upper limit on their values.
Their values must, of course, be positive. However, unlike probabilities, they do not
have to be less than 1. In fact, it is even possible for a probability density to diverge
at one or more points, as long as the integral over all values is 1.

Like probabilities, probability densities must be normalized. If Ω indicates the
entire range over which the probability density is defined, then∫

Ω

P (x)dx = 1 (5.6)

with obvious extensions to multi-dimensional, continuous random numbers.
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Marginal probabilities are defined in analogy to the definition for discrete numbers.

Px(x) =
∫ ∞

−∞
P (x, y)dy (5.7)

Conditional probabilities can also be defined if Px(x) �= 0. The conditional proba-
bility P (y|x) can be written as

P (y|x) =
P (x, y)
Px(x)

(5.8)

In general, we have

P (x, y) = P (x|y)Py(y)

= P (y|x)Px(x) (5.9)

Independence is also defined in analogy to discrete probability theory. Two con-
tinuous random numbers are said to be independent if

P (x, y) = Px(x)Py(y). (5.10)

Using eq. (5.9), we can see that if x and y are independent random numbers and
Py(y) �= 0, the conditional probability P (x|y) is independent of y.

P (x|y) =
P (x, y)
Py(y)

=
Px(x)Py(y)

Py(y)
= Px(x) (5.11)

The average of any function F (x) can be calculated by integrating over the
probability density.

〈F (x)〉 =
∫ ∞

−∞
F (x)P (x)dx (5.12)

Averages, moments, and central moments are all defined as expected from discrete
probability theory.

Mean:

〈x〉 =
∫ ∞

−∞
xP (x)dx (5.13)

n-th moment:

〈xn〉 =
∫ ∞

−∞
xnP (x)dx (5.14)

n-th central moment:

〈(x − 〈x〉)n〉 =
∫ ∞

−∞
(x − 〈x〉)n

P (x)dx (5.15)
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As for discrete probabilities, the variance is defined as the second central moment,
and the standard deviation is the square root of the variance.

A word of warning:
Many books refer to continuous random numbers as if they were discrete. They
will refer to the probability of finding a random number in a given interval as being
proportional to the ‘number of points’ in that interval. This is entirely incorrect and
can cause considerable confusion. The number of points in an interval is infinite. It
is even the same infinity as the number of points in any other interval, in the sense
that the points in any two intervals can be mapped one-to-one onto each other.
This error seems to have arisen in the nineteenth century, before physicists were
entirely comfortable working with continuous random numbers. Although we are
now in the twenty-first century, the error seems to be quite persistent. I can only
hope that the next generation of physicists will finally overcome it.

5.3 Dirac Delta Functions

In Chapter 3 we discussed finding the probability of the sum of two dice using
Kronecker delta functions. In the next section we will carry out the analogous calcu-
lation for two continuous dice. Although the problem of two continuous dice is highly
artificial, it is useful because its mathematical structure will often be encountered in
statistical mechanics.

For these calculations we will introduce the Dirac delta function, named for its
inventor, Paul Adrien Maurice Dirac (English physicist, 1902—1984). The Dirac delta
function is an extension of the idea of a Kronecker delta to continuous functions. This
approach is not usually found in textbooks on probability theory—which is a shame,
because Dirac delta functions make calculations much easier.

Dirac delta functions are widely used in quantum mechanics, so most physics
students will have encountered them before reading this book. However, since we
will need more properties of the delta function than are usually covered in courses
in quantum mechanics, we will present a self-contained discussion in the following
section.

5.3.1 Definition of Delta Functions

To provide a simple definition of a Dirac delta function, we will first consider an
ordinary function that is non-zero only in the neighborhood of the origin.1

δε(x) ≡

⎧⎪⎪⎨
⎪⎪⎩

0 x < −ε

1
2ε

−ε ≤ x ≤ ε

0 x > ε

1An alternative way of defining the Dirac delta function uses Gaussian functions, which has advantages
when discussing derivatives. The approach used in this section has been chosen for its simplicity.
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Clearly, this function is normalized.∫ ∞

−∞
δε(x)dx = 1 (5.16)

In fact, since δε(x) is only non-zero close to the origin,∫ b

a

δε(x)dx = 1 (5.17)

as long as a < −ε and b > ε.
It is also obvious that the function is symmetric.

δε(x) = δε(−x) (5.18)

If we consider the function δε(cx), where c is a constant, the symmetry of the function
means that the sign of c is irrelevant.

δε(cx) = δε(|c|x) (5.19)

Note that the width of the function δε(cx) is a factor of 1/|c| times that of δε(x), while
the height of the function remains the same (1/2ε).

5.3.2 Integrals over Delta Functions

We can integrate over δε(cx) by defining a new variable y = cx.
∫ b

a

δε(cx)dx =
∫ b/|c|

a/|c|
δε(y)dy/|c| =

1
|c| (5.20)

When the argument of the delta function has a zero at some value of x �= 0, the
integral is unaffected as long as the limits of the integral include the zero of the
argument of the delta function. As long as a < d/c − ε and b > d/c + ε, we have

∫ b

a

δε(cx − d)dx =
∫ b/|c|

a/|c|
δε(y)dy/|c| =

1
|c| (5.21)

The Dirac delta function, δ(x), is defined as the limit of δε(x) as ε goes to zero.

δ(x) ≡ lim
ε→0

δε(x) (5.22)

The Dirac delta function is zero for all x �= 0 and infinite for x = 0, so that calling
it a function greatly annoys many mathematicians. For this reason, mathematics
books on probability theory rarely mention the delta function. Nevertheless, if you
are willing to put up with a mathematician’s disapproval, the Dirac delta function
can make solving problems much easier.
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The integral of the Dirac delta function is also unity when the limits of integration
include the location of the zero of the argument of the delta function.

∫ b

a

δ(x)dx = 1 (5.23)

as long as a < 0 and b > 0, and zero otherwise.
Similarly, when the argument of the delta function is (cx − d), the value of the

integral is

∫ b

a

δ(cx − d)dx =
1
|c| (5.24)

as long as a < d/c and b > d/c, and zero otherwise.

5.3.3 Integral of f (x) times a Delta Function

The Dirac delta function can be used to pick out the value of a continuous function
at a particular point, just as the Kronecker delta does for a discrete function. This is
one of its most useful properties.

Consider a function f(x) that is analytic in some region that includes the point
xo. Then we can expand the function as a power series with a non-zero radius of
convergence

f(x) =
∞∑

j=0

1
j!

f (j)(xo)(x − xo)j (5.25)

where f (j)(x) is the j-th derivative of f(x).

f (j)(x) =
dj

dxj
f(x) (5.26)

Consider the integral over the product of f(x) and δε(x − xo).

∫ ∞

−∞
f(x)δε(x − xo)dx =

1
2ε

∫ xo+ε

xo−ε

f(x)dx

=
∞∑

j=0

1
j!

1
2ε

∫ xo+ε

xo−ε

f (j)(xo)(x − xo)jdx

=
∞∑

j=0

1
j!

1
2ε

f (j)(xo)
1

j + 1
[
εj+1 − (−ε)j+1

]
(5.27)
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All terms with odd j vanish. Keeping only the even terms and defining n = j/2 for
even values of j, we can write the integral as

∫ ∞

−∞
f(x)δε(x − xo)dx =

∞∑
n=0

1
(2n + 1)!

f (2n)(xo)ε2n

= f(xo) +
∞∑

n=1

1
(2n + 1)!

f (2n)(xo)ε2n (5.28)

When we take the limit of ε → 0, the function, δε(·) becomes a Dirac delta function,
and the right-hand side of the equation is just f(xo).∫ ∞

−∞
f(x)δ(x − xo)dx = f(xo) (5.29)

We can generalize eq. (5.29) to include more general arguments of the delta
function. First, if the argument is of the form c(x − xo), the result is divided by |c|.∫ ∞

−∞
f(x)δ (c(x − xo)) dx =

f(xo)
|c| (5.30)

We can further generalize this equation to allow the delta function to have an
arbitrary argument, g(x). If g(x) has zeros at the points {xj |j = 1, . . . , n}, and g′(x)
is the derivative of g(x), the integral becomes

∫ ∞

−∞
f(x)δ (g(x)) dx =

n∑
j=1

f(xj)
|g′(xj)| (5.31)

This can be proved by expanding g(x) about each of its zeros.

Common errors in working with Dirac delta functions:

• Not including all zeros of g(x).
• Including zeros of g(x) that are outside the region of integration.
• Not including the absolute value of g′(x) in the denominator.

5.4 Transformations of Continuous Random Variables

We are often interested in functions of random variables, which are themselves random
variables. As an example, consider the following problem.

Given two continuous random variables, x and y, along with their joint probability
density, P (x, y), we wish to find the probability density of a new random variable, s,
that is some function of the original random variables, s = f(x, y). The formal solution
can be written in terms of a Dirac delta function.
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P (s) =
∫ ∞

−∞

∫ ∞

−∞
P (x, y)δ(s − f(x, y))dx dy (5.32)

As was the case for the corresponding discrete random variables, the probability
density of s is automatically normalized.∫ ∞

−∞
P (s)ds =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
P (x, y)δ(s − f(x, y))ds dx dy (5.33)

=
∫ ∞

−∞

∫ ∞

−∞
P (x, y) dx dy = 1

The last equality is due to the normalization of P (x, y).

5.4.1 Sum of Two Random Numbers

To see how eq. (5.32) works in practice, consider the sum of two uniformly distributed
random numbers. We will use the example of two continuous dice, in which the two
random numbers x and y each take on values in the interval [1, 6], and the probability
density is uniform.

P (x, y) = 1/36 (5.34)

This probability density is consistent with the normalization condition in eq. (5.6).
The probability density for s = x + y is then

P (s) =
∫ 6

0

∫ 6

0

P (x, y)δ(s − (x + y))dx dy

=
1
36

∫ 6

0

∫ 6

0

δ(s − (x + y))dx dy (5.35)

Following the same procedure as in Section 3.4, we first carry out the integral
over y. ∫ 6

0

δ(s − (x + y))dy =
{

1 0 ≤ s − x ≤ 6
0 otherwise (5.36)

In direct analogy to the procedure for calculating the sum of two discrete dice in
Section 3.4, we have two conditions on the remaining integral over x. Only those values
of x for which both x < s and x > s − 6 contribute to the final answer. These limits
are in addition to the limits of x < 6 and x > 0 that are already explicit in the integral
over x. Since all four of these inequalities must be satisfied, we must take the more
restrictive of the inequalities in each case. Which inequality is the more restrictive
depends on the value of s. Determining the proper limits on the integral over x is
illustrated in Table 5.1, which should be compared to Table 3.3 for the corresponding
discrete case.

For s ≤ 6, the lower bound on x is 0 and the upper bound is s. For s ≥ 6, the
lower bound on x is s − 6 and the upper bound is 6. The sums can then be evaluated
explicitly.
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Table 5.1 Determining the limits for the second integral when evaluating eq. (5.35).

lower limit upper limit

From limits on integral: x ≥ 0 x ≤ 6
From delta function: x ≥ s − 6 x ≤ s

More restrictive if s ≤ 6 x ≥ 0 x ≤ s

More restrictive if s ≥ 6 x ≥ s − 6 x ≤ 6

P (s) =

⎧⎪⎪⎨
⎪⎪⎩

∫ s

0

1
36

=
s

36
s ≤ 6∫ 6

s−6

1
36

=
12 − s

36
s ≥ 6

(5.37)

5.5 Bayes’ Theorem

Bayes’ theorem, eq. (3.13), was derived in Section 3.3.1.

P (A|B) =
P (B|A)PA(A)

PB(B)
(5.38)

If we accept the Bayesian definition of probability in Section 3.1, we can apply
eq. (5.38) to the determination of theoretical parameters from experiment.

Let X denote the data from an experiment, while θ denotes the theoretical
parameter(s) we wish to determine. Using standard methods, we can calculate the
conditional probability P (X|θ) of observing a particular set of data if we know the
parameters. However, that is not what we want. We have the results of the experiment
and we want to calculate the parameters conditional on that data.

Bayes’ theorem gives us the information we want about the theoretical parameters
after the experiment. It provides the information on a particular set of measurements
X, as the conditional probability for θ in the following equation.

P (θ|X) =
P (X|θ)Pθ(θ)

PX(X)
(5.39)

In Bayesian terminology, Pθ(θ) is called the ‘prior’ and represents whatever knowledge
we had of the parameters before we carried out the experiment. The conditional prob-
ability P (X|θ)—viewed as a function of θ—is called the ‘likelihood’. The conditional
probability P (θ|X) is known as the ‘posterior’, and represents our knowledge of the
parameters after we have obtained data from an experiment.

For example, suppose you want to determine the value of the asymptotic frequency
f (the frequentist’s probability) for a particular random event. Assume you have done
an experiment with a binary outcome of success or failure, and you obtained n =
341, 557 successes in N = 106 trials. The experimental data, denoted above by X, is
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n in this case. You would immediately guess that f ≈ 0.341557, but how close to that
value is it?

Our theoretical parameter, denoted by θ in eq. (5.39), is the value of f . Suppose
we knew nothing of the value of f before the experiment, except that 0 ≤ f ≤ 1. A
reasonable description of our knowledge (or lack of it) would be to say that our prior is
a uniform constant for values between zero and 1. From the normalization condition,
the constant must be 1.

Pf (f) =

⎧⎨
⎩

0 f < 0
1 0 ≤ f ≤ 1
0 f > 1

(5.40)

The likelihood is given by the binomial distribution

PN (n|f) =
N !

n!(N − n)!
fn(1 − f)N−n (5.41)

As is usual in Bayesian calculations, we will ignore PN,n(n); since it does not depend
on f , it simply plays the role of a normalization constant. Putting eqs. (5.39), (5.40),
and (5.41) together and ignoring multiplicative constants, we have the probability
density for f .

PN (f |n) ∝ fn(1 − f)N−n (5.42)

For large n and N , this is a sharply peaked function. The maximum can be found
by setting the derivative of its logarithm equal to zero.

d

df
PN (f |n) =

d

df
[n ln f + (N − n) ln(1 − f) + constants] =

n

f
− N − n

1 − f
= 0 (5.43)

The maximum is therefore located at

fmax =
n

N
(5.44)

as expected, since we had n successes in N trials.
The variance can be found by approximating the distribution by a Gaussian, finding

the second derivative, and evaluating it at fmax.

d2

df2
[n ln f + (N − n) ln(1 − f)] =

d

df

[
n

f
− N − n

1 − f

]
(5.45)

= − n

f2
− N − n

(1 − f)2
(5.46)

Evaluating this derivative at f = fmax = n/N The variance is then given by

− 1
σ2

= − N

fmax
− N

1 − fmax
= − N

fmax(1 − fmax)
(5.47)
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or

σ2 =
fmax(1 − fmax)

N
(5.48)

The standard deviation is then

σ =

√
fmax(1 − fmax)

N
(5.49)

so that the uncertainty in the value of f is proportional to 1/
√

N .

5.6 Problems

Problem 5.1

Probability densities

1. Given a continuous random number x, with the probability density

P (x) = A exp(−2x)

for all x > 0, find the value of A and the probability that x > 1.
2. It is claimed that the function

P (y) =
B

y

where B is a constant, is a valid probability density for 0 < y < 1.
Do you agree? If so, what is the value of B?

3. It is claimed that the function

P (y) =

√
C

y

where C is a constant, is a valid probability distribution for 0 < y < 1.
Do you agree? If so, what is the value of C?

4. The probability distribution P (x, y) has the form

P (x, y) = Dxy

for the two random numbers x and y in the region x > 0, y > 0, and x + y < 1,
where D is a constant, and P (x, y) = 0 outside this range.
(a) What is the value of the constant D?
(b) What is the probability that x < 1/2?
(c) Are x and y independent?
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Problem 5.2

How well can we measure the asymptotic frequency?

I have run a number of computer simulations in which a ‘success’ occurred with
probability p. It would be no fun if I told you the value of p, but I will tell you
the results of the simulations.

Trials Successes

102 69
103 641
104 6353
105 63738
106 637102
107 6366524

1. Using Bayesian statistics, we showed that we can represent our knowledge of the
value of p by a probability distribution (or probability density) P (p|n), which is
the conditional probability density for p, given that an experiment of N trials
produced n successes. P (p|n) is found using Bayes’ theorem. Note that P (n|p),
the conditional probability of finding n successes in N trials when the probability
is p, is just the binomial distribution that we have been studying.

Find the location of the maximum of this probability density by taking the
first derivative of P (p|n) and setting

∂

∂p
lnP (p|n) = 0

Find the general expression for the width of P (p|n) by taking the second deriva-
tive. The procedure is essentially the same as the one we used for calculating the
Gaussian approximation to the integrand in deriving Stirling’s approximation.

2. Using the result you obtained above, what can you learn about the value of p
from each of these trials? Is the information from the various trials consistent?
(Suggestion: A spreadsheet can be very helpful for calculations in this problem.)

Problem 5.3

Continuous probability distributions

Determine the normalization constant and calculate the mean, variance, and standard
deviation for the following random variables.

1. For x ≥ 0

P (x) = A exp(−ax)

2. For x ≥ 1

P (x) = Bx−3
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Problem 5.4

Integrals over delta functions

Evaluate the following integrals in closed form:

1. ∫ ∞

−∞
x4δ(x2 − y2)dx

2. ∫ ∞

−1

exp(−x)δ(sin(x)))dx

3. The probability density P (x, y) has the form

P (x, y) = 24xy

for the two random numbers x and y in the range x > 0, y > 0, and x + y < 1,
and P (x, y) = 0 outside this range.
What is the probability distribution for the following new random variable?

z = x + y

Problem 5.5

Transforming random variables

Consider the two random variables x and y. Their joint probability density is given by

P (x, y) = A exp
[−x2 − 2y

]
where A is a constant, x ≥ 0, y ≥ 0, and y ≤ 1.

1. Evaluate the constant A.
2. Are x and y independent? Justify your answer.
3. If we define a third random number by the equation

z = x2 + 2y

what is the probability density P (z)?

Problem 5.6

Maxwell–Boltzmann distribution

In the near future we will derive the Maxwell–Boltzmann distribution for the velocities
(or the momenta) of gas particles. The probability density for the x-component of the
velocity is
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P (vx) = A exp
[
−β

1
2
mv2

x

]

1. What is the value of the normalization constant A?
2. What is the probability density for the velocity �v = (vx, vy, vz)?
3. What is the probability distribution (probability density) of the speed (magnitude

of the velocity)?

Problem 5.7

Two one-dimensional, ideal-gas particles

Consider two ideal-gas particles with masses mA and mB, confined to a one-
dimensional box of length L. Assume that the particles are in thermal equilib-
rium with each other, and that the total kinetic energy is E = EA + EB . Use the
usual assumption that the probability is uniform in phase space, subject to the
constraints.

1. Calculate the probability distribution P (EA) for the energy of one of the particles.
2. Calculate the average energy of the particle, 〈EA〉.
3. Find the most probable value of the energy EA (the location of the maximum of

the probability density).

Problem 5.8

Energy distribution of a free particle

Suppose we have an ideal gas in a finite cubic box with sides of length L. The system
is in contact with a thermal reservoir at temperature T . We have determined the
momentum distribution of a single particle to be:

P (�p, z) = X exp
[
−β

|�p|2
2m

]

Find P (E), where E is the energy of a single particle.

Problem 5.9

Particle in a gravitational field

An ideal gas particle in a gravitational field has a probability distribution in momen-
tum �p and height z of the form

P (�p, z) = X exp
[
−β

|�p|2
2m

− βmgz

]

for 0 ≤ z < ∞ and all values of momentum.
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1. Evaluate the constant X.
2. Calculate the average value of the height: 〈z〉.
3. Calculate the probability distribution of the total energy of the particle.

E =
|�p|2
2m

+ mgz
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The Classical Ideal Gas:
Energy-Dependence of Entropy

For those who want some proof that physicists are human, the proof is in the
idiocy of all the different units they use for measuring energy.

Richard Feynman

This chapter provides the second half of the derivation of the entropy of the classical
ideal gas, as outlined in Chapter 2 and begun in Chapter 4. In the present chapter
we will calculate the probability distribution for the energy of each subsystem.
The logarithm of that probability then gives the energy-dependent contribution
to the entropy of the classical ideal gas. The total entropy is just the sum of
the configurational entropy and the energy-dependent terms, as discussed in Sec-
tion 4.1.

6.1 Distribution for the Energy between Two Subsystems

We again consider the composite system that consists of the two subsystems discussed
in Chapter 2. Subsystem A contains NA particles and subsystem B contains NB

particles, with a total of N = NA + NB particles in the composite system. Since we
are dealing with classical, non-interacting particles, the energy of each subsystem is
given by

Eα =
Nα∑
j=1

|�pα,j |2
2m

(6.1)

where α = A or B and m is the mass of a single particle. The momentum of the j-th
particle in subsystem α is �pα,j .

The composite system is perfectly isolated from the rest of the universe, and the
total energy E = EA + EB is fixed. We are interested in the case in which the two
subsystems can be brought into thermal contact to enable the subsystems to exchange
energy, so that the composite system can come to thermal equilibrium.

A partition that is impervious to particles, but allows energy to be exchanged
between subsystems, is called a ‘diathermal’ wall, in contrast to an adiabatic wall that
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prevents the exchange of either particles or energy. We wish to calculate the probability
distribution of the energy between two subsystems separated by a diathermal wall.

To determine the probability distribution of the total energy we must make an
assumption about the probability distribution in momentum space. The simplest
assumption is that the momentum distribution is constant, subject to the con-
straints on the energy. This is the counterpart of the assumption made in Chap-
ter 4, that the positions of the particles were uniformly distributed in configuration
space.

With the assumption of uniform probability density in momentum space, we can
calculate the probability distribution for the energy from that of the momenta, using
the methods from Section 5.4. We use Dirac delta functions to select states for which
system A has energy EA and system B has energy EB . Conservation of energy in the
composite system of course requires that EB = E − EA, but this form of writing the
probability distribution will be useful in Section 6.2 when we separate the contributions
of the two subsystems.

Since the notation can become unwieldy at this point, we use a compact notation
for the integrals

∞∫
−∞

· · ·
∞∫

−∞
(· · · )dp3

A,1 · · · dp3
A,NA

≡
∞∫

−∞
(· · · )dpA (6.2)

and write:

P (EA, EB) =

∞∫
−∞

δ

(
EA −

NA∑
j=1

|�pA,j |2
2m

)
dpA

∞∫
−∞

δ

(
EB −

NB∑
j=1

|�pB,j |2
2m

)
dpB

∞∫
−∞

δ

(
E −

N∑
j=1

|�pj |2
2m

)
dp

(6.3)

The integral over dp in the denominator goes over the momenta of all particles in the
composite system.

The denominator of eq. (6.3) is chosen to normalize the probability distribution.∫ ∞

0

P (EA, E − EA) dEA = 1 (6.4)

By defining a function

ΩE (Eα, Nα) =
∫ ∞

−∞
δ

⎛
⎝Eα −

Nα∑
j=1

|�pα,j |2
2m

⎞
⎠ dp, (6.5)

we can write eq. (6.3) in an even more compact form that highlights its similarity to
eq. (4.14).

P (EA, EB) =
ΩE (EA, NA) ΩE (EB , NB)

ΩE (E,N)
(6.6)
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6.2 Evaluation of ΩE

To complete the derivation of P (EA, EB), we need to evaluate the function ΩE (E,N)
in eq. (6.5). Fortunately, this can be done exactly by taking advantage of the symmetry
of the integrand to transform the 3N -dimensional integral to a one-dimensional
integral, and then relating the integral to a known function.

6.2.1 Exploiting the Spherical Symmetry of the Integrand

The delta function in eq. (6.5) makes the integrand vanish everywhere in momentum
space, except on a sphere in momentum space defined by energy conservation.

2mE =
N∑

j=1

|�pj |2 (6.7)

(For simplicity, we have dropped the subscript α.) The radius of this 3N -dimensional
sphere is clearly

√
2mE.

Since the area of an n-dimensional sphere is given by A = Snrn−1, where Sn is
a constant that depends on the dimension, n, the expression for the function can
be immediately transformed from a 3N -dimensional integral to a one-dimensional
integral.

ΩE (E,N) =

∞∫
−∞

· · ·
∫ ∞

−∞
δ

⎛
⎝E −

N∑
j=1

|�pj |2
2m

⎞
⎠ dp1 · · · dp3N

=

∞∫
0

Snp3N−1δ

(
E − p2

2m

)
dp (6.8)

The new integration variable is just the radial distance in momentum space.

p2 =
N∑

j=1

|�pj |2 (6.9)

To evaluate the integral in eq. (6.8), transform the variable of integration by
defining x = p2/2m, which implies that p2 = 2mx and pdp = mdx. Inserting this in
the expression for ΩE (E,N), we can evaluate the integral.

ΩE (E,N) = Sn

∞∫
0

p3N−1δ

(
E − p2

2m

)
dp

= Sn

∞∫
0

(2mx)(3N−1)/2δ (E − x)mdx

= Snm(2mE)(3N−1)/2 (6.10)
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The only thing remaining is to evaluate Sn, which is the surface area of an n-
dimensional sphere of unit radius.

6.2.2 The Surface Area of an n-Dimensional Sphere

The volume of a sphere in n dimensions is given by Cnrn, where Cn is a constant. By
differentiation, the area of the sphere is nCnrn−1, so that Sn = nCn.

To evaluate Cn we can use a trick involving Gaussian integrals. We begin by taking
the n-th power of both sides of eq. (3.61).

[∫ ∞

−∞
e−x2

dx

]n
=
[√

π
]n = πn/2

=
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

⎛
⎝− n∑

j=1

x2
j

⎞
⎠ dx1 dx2 · · · dxn

=
∫ ∞

0

exp
(−r2

)
Snrn−1dr

= nCn

∫ ∞

0

exp
(−r2

)
rn−1dr (6.11)

We can transform the final integral in eq. (6.11) to a more convenient form by changing
the integration variable to t = r2.

πn/2 = nCn

∫ ∞

0

exp
(−r2

)
rn−1dr

=
1
2
nCn

∫ ∞

0

exp
(−r2

)
rn−22r dr

=
1
2
nCn

∫ ∞

0

e−ttn/2−1dt (6.12)

The integral in eq. (6.12) is well known; it is another representation of the factorial
function.

m! =
∫ ∞

0

e−t tmdt (6.13)

We can see why this is so by induction. Begin with m = 0.

∫ ∞

0

e−t t0dt =
∫ ∞

0

e−tdt = 1 = 0! (6.14)
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If eq. (6.13) is valid for m, then we can use integration by parts to prove that it is
valid for (m + 1).∫ ∞

0

e−t tm+1dt =
[
e−t(m + 1)tm

]∞
0

− (m + 1)
∫ ∞

0

(−e−t) tmdt

= (m + 1)
∫ ∞

0

e−t tmdt

= (m + 1)m!

= (m + 1)! (6.15)

This confirms the validity of eq. (6.13) for all positive integers.
A convenient consequence of eq. (6.13) is that it provides an analytic continuation

of m! to non-integer values. It is traditional to call this extension of the concept of
factorials a Gamma (Γ) function.

Γ(m + 1) = m! =
∫ 0

−∞
e−t tmdt (6.16)

For many purposes, Γ(·) is a very useful notation. However, the shift between m and
m + 1 can be a mental hazard. I will stay with the factorial notation, even for non-
integer values.

Returning to eq. (6.12), we can now complete the derivation of Cn.

πn/2 =
1
2
nCn

∫ ∞

0

e−ttn/2−1dt

= Cn

(n

2

)
(n/2 − 1)!

= (n/2)!Cn (6.17)

This gives us our answers for Cn and Sn = nCn.

Cn =
πn/2

(n/2)!
(6.18)

Sn = n
πn/2

(n/2)!
(6.19)

6.2.3 Exact Expression for ΩE

Inserting eq. (6.19) into the expression for ΩE (E,N) in eq. (6.10) we find

ΩE (E,N) =
3Nπ3N/2

(3N/2)!
m(2mE)(3N−1)/2 (6.20)
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An excellent approximation to the logarithm of ΩE (E,N) can be found using
Stirling’s approximation. The errors are of order 1/N .

ln ΩE (E,N) ≈ N

[
3
2

ln
(

E

N

)
+ X

]
(6.21)

The constant X in eq. (6.21) can be calculated, but will not be needed at this point.

6.3 Probability Distribution for Large N

Putting the functional form of ΩE into eq. (6.6)—and ignoring constants for the time
being—we find the energy-dependence of the probability distribution.

P (EA, E − EA) =
ΩE (EA, NA) ΩE (E − EA, NB)

ΩE (E,N)
(6.22)

∝ (EA)(3NA−1)/2 (E − EA)(3NB−1)/2

We are primarily interested in finding the average energy, 〈EA〉, because the energy
EA has a very narrow probability distribution, and the measured energy will almost
always be equal to 〈EA〉 within experimental error. We want to find the width of the
distribution, δEA, only to confirm that the distribution is narrow.

The average, 〈EA〉, is most easily found by approximating it by the location of
the maximum probability, which, in turn, is found by taking the derivative of the
logarithm of the energy distribution and setting it equal to zero.

∂

∂EA
lnP (EA, E − EA) =

(
3NA − 1

2

)
1

EA
−
(

3NB − 1
2

)
1

E − EA
= 0 (6.23)

Solving this equation gives us the location of the maximum of the probability distri-
bution, which is located at 〈EA〉 to very high accuracy.

EA,max = 〈EA〉 =
(

3NA − 1
3N − 2

)
E. (6.24)

For a large number of particles, this becomes

EA,max =
(

NA

N

)
E (6.25)

or

EA,max

NA
=

E

N
=

〈EA〉
NA

(6.26)

with a relative error of the order of N−1. When N = 1020, or even N = 1012, this is
certainly an excellent approximation.



68 The Classical Ideal Gas: Energy-Dependence of Entropy

Note that the energy per particle is the same in each subsystem. This is a special
case of the equipartition theorem, which we will discuss in more detail when we
come to the canonical ensemble in Chapter 19.

For large N , the probability distribution is very sharply peaked. It can be approx-
imated by a Gaussian, and we can use the same methods as we did in Section 3.9 to
determine the appropriate parameters. In particular, we can calculate the width of the
probability distribution by taking the second derivative of the logarithm, which gives
us the negative reciprocal of the variance.

∂2

∂E2
A

lnP (EA, E − EA) = −
(

3NA − 1
2

)
1

E2
A

−
(

3NB − 1
2

)
1

(E − EA)2
(6.27)

Evaluating this at the maximum of the function, EA,max = ENA/N , and assuming
that we are dealing with large numbers of particles, this becomes

∂2

∂E2
A

lnP (EA, E − EA)
∣∣∣∣
EA=ENA/N

= −
(

3NA

2

)
N2

E2N2
A

−
(

3NB

2

)
N2

E2N2
B

= −3N2

2E2

(
1

NA
+

1
NB

)

= −3N2
A

2E2
A

(
N

NANB

)

= −σ−2
EA

(6.28)

The variance of EA is then:

σ2
EA

=
2〈EA〉2
3N2

A

(
NANB

N

)
=

〈EA〉2
N

(
2NB

3NA

)
(6.29)

The width of the energy distribution is then given by the standard deviation,
δEA = σEA

.

σEA
= 〈EA〉

√
1
N

(
2NB

3NA

)1/2

= 〈EA〉
√

1
NA

(
2NB

3N

)1/2

(6.30)

From eq. (6.30), we see that since EA ∝ NA, the width of the probability distrib-
ution increases with

√
NA, while the relative width,

δEA

〈EA〉 =
σEA

〈EA〉 =
√

1
NA

(
2NB

3N

)1/2

(6.31)

decreases with
√

NA.
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The behavior of the width and relative width is analogous to the
√

NA behavior
we saw in eq. (4.10) for the width of the probability distribution for NA. As the size
of the system increases, the width of the probability distribution for EA increases,
but the relative width decreases. For a system with 1020 particles, the typical relative
deviation of EA from it average value is of the order of 10−10, which is a very small
number.

This increase of the standard deviation δEA with the size of the system has the
same significance discussed in Section 4.4 for δNA. The average value of the energy
is a description of the subsystem that we find useful; it is not the same as the true
energy of the subsystem at any given time.

In analogy to the corresponding question in Section 4.4, we might ask the following.
Given the large value of δEA, why is 〈EA〉 at all useful? The reason is that the relative
width of the probability distribution

δEA

〈EA〉 =
(

2
3

)1/2(
VB

VA

)1/2

N
−1/2
A (6.32)

becomes smaller as the size of the system increases. For 1020 particles, δEA/〈EA〉 is
of the order of N−1/2 = 10−10, which is much too small to be seen by macroscopic
experiments.

For both the energy and the number of particles in a subsystem, we have found
that the relative width of the probability distribution is very narrow. As long as
the width of the probability distribution is narrower than the uncertainty in the
experimental measurements, we can regard the predictions of probability theory
(statistical mechanics) as giving effectively deterministic values.

It is important to note both that it is not necessary to take the ‘thermodynamic
limit’ (infinite size) for thermodynamics to be valid, and that it is necessary for the
system to be large enough so that the relative statistical fluctuations of measured
quantities is negligible in comparison with the experimental error.

6.4 The Logarithm of the Probability Distribution and the
Energy-Dependent Terms in the Entropy

In direct analogy to the derivation of eq. (4.18) for the configurational contributions
in Chapter 4, we can find the the energy-dependent term in the entropy by taking the
logarithm of eq. (6.6).

In analogy to eq. (4.16), we can define a function to describe the energy-dependent
contributions to the entropy of the classical ideal gas.

SE,α = k ln ΩE (Eα, Nα) (6.33)

where α refers to one of the subsystems, A or B, or the composite system when α is
omitted. The energy-dependent contributions to the entropy of the composite system
are then:
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SE,tot (EA, NA, EB , NB) ≡ k lnP (EA, NA, EB , NB) + SE (E,N)

= SE (EA, NA) + SE (EB , NB) (6.34)

SE,tot (EA, NA, EB, NB) is the energy-dependent contribution to the total entropy
of the composite system, while SE (EA, NA) and SE (EB, NB) as the corresponding
energy-dependent contributions to the entropies of the subsystems.

Eq. (6.34) shows that the energy-dependent contributions to the entropy of an
ideal gas are additive, as the configurational terms were shown to be in Section 4.6.

As was the case for the configurational entropy, the height of the probability
distribution for EA is proportional to

√
NA, so that in equilibrium

k lnP (EA, NA, EB , NB) ∝ lnN ≪ SE (E,N) ∝ N (6.35)

and the energy-dependent contributions to the entropy of the composite system in
equilibrium is given by SE (E,N).

SE,tot (EA, NA, EB, NB) = SE (EA, NA) + SE (EB , NB) = SE (N,V ) (6.36)

From eq. (6.21), we can see that for large N , the energy contributions of the entropy
are given by

SE(E, V ) = kB ln ΩE(E, V ) ≈ kBN

[
3
2

ln
(

E

N

)
+ X

]
(6.37)

where the errors are of order 1/N , and X is a constant that we will not need to
evaluate at this point.
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Classical Gases: Ideal and Otherwise

Even imperfection itself may have its ideal or perfect state.
Thomas de Quincey

In Chapter 2 we introduced Boltzmann’s 1877 definition of the entropy in terms of
the logarithm of a probability. We assumed that the positions and momenta of the
particles in a classical ideal gas were independent random variables, so that we could
examine their contributions to the entropy independently. In Chapter 4 we calculated
the contributions from the positions of the particles, and in Chapter 6 we calculated
the contributions from the momenta of the particles. Now we are in a position to put
them together to find the total entropy of the composite system.

7.1 Entropy of a Composite System of Classical Ideal Gases

We have seen that the contributions to the total entropy of the composite system
from the positions of the particles in eq. (4.16) and their momenta in eq. (6.33) simply
add to give the total entropy. Since both the configurational and energy-dependent
contributions to the entropy of the composite system are separable into contributions
from each subsystem, the total entropy is also separable. It is easier (and requires
less space) to look at the expression for the entropy of a single system at this point,
rather than the composite system needed for the derivations in Chapters 4 and 6. For
simplicity we will omit the subscripts that indicate which subsystem we are referring
to, since the mathematical form is the same in each case.

S(E, V,N) = kN

[
ln
(

E3N/2−1

(3N/2)!

)
+ ln
(

V N

N !

)
+ X ′

]
(7.1)

This equation contains two constants that are still arbitrary at this point: k, which
will be discussed in Chapter 8, and X ′, which we will discuss further below.

For any macroscopic system—that is, any system with more than about 1010

particles—Stirling’s approximation is excellent. We can also replace 3N/2 − 1 with
3N/2, which has a relative error of only 3/2N . The result is the entropy of a classical
ideal gas.

S(E, V,N) = kN

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]
(7.2)
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The constant X = X ′ + 1 comes from the replacement of N ! by Stirling’s
approximation.

The value of X in eq. (7.2) is completely arbitrary within classical mechanics.
However, there is a traditional value chosen for X.

X =
3
2

ln
(

4πm

3h2

)
+

5
2

(7.3)

The constant h in this expression is Planck’s constant, taken from quantum mechanics.
The presence of Planck’s constant in eq. (7.3) makes it obvious that this value of X has
nothing to do with classical mechanics. It is determined by solving for the entropy of a
quantum mechanical gas—for which the additive constant does have a meaning—and
taking the classical limit. We will carry out this procedure in Chapters 26, 27, and 28.

7.2 Equilibrium Conditions for the Ideal Gas

By definition, the entropy of any composite system should be a maximum at equi-
librium. Eq. (7.2) satisfies that condition with respect to both energy and particle
number. We will show this explicitly below—first for equilibrium with respect to
energy, and then with respect to particle number.

7.2.1 Equilibrium with Respect to Energy

We want to confirm that the expression we have derived for the entropy predicts the
correct equilibrium values for the energies of two subsystems. To do that, consider
an experiment on a composite system with fixed subvolumes, VA and VB, containing
NA and NB particles respectively. The total energy of the particles in the composite
system is E. There is a diathermal wall separating the two subvolumes, so that they
can exchange energy.

We want to find the maximum of the entropy to confirm that it occurs at the
equilibrium values of EA and EB = E − EA. We find the maximum in the usual way,
by setting the partial derivative with respect to EA equal to zero.

∂

∂EA
S(EA, VA, NA;E − EA,VB , NB) =

∂

∂EA
[SA(EA, VA, NA) + SB(EB , VB , NB)]

=
∂

∂EA
SA(EA, VA, NA) +

∂EB

∂EA

∂

∂EB
SB(EB , VB , NB)

=
∂

∂EA
SA(EA, VA, NA) − ∂

∂EB
SB(EB , VB , NB)

= 0 (7.4)

This gives us an equilibrium condition that will play a very important role in the
development of thermodynamics.

∂SA

∂EA
=

∂SB

∂EB
(7.5)
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Since the partial derivative of the entropy with respect to energy is

∂S

∂E
= kN

∂

∂E

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]

=
3
2
kN

∂

∂E
[lnE − lnN ]

=
3kN

2E
(7.6)

the equilibrium condition is predicted to be

EA

NA
=

EB

NB
(7.7)

which is the equilibrium condition found in eq. (6.26).

7.2.2 Equilibrium with Respect to the Number of Particles

We now demonstrate that our expression for the entropy predicts the correct equilib-
rium values of the numbers of particles in each subsystem. Consider an experiment on
a composite system with fixed subvolumes, VA and VB . The total number of particles
is N , but there is a hole in the wall between the two subvolumes, so that they can
exchange both energy and particles. The total energy of the particles in the composite
system is E.

Since the two subsystems can exchange particles, they can certainly exchange
energy. The derivation in the previous subsection is still valid, so that the entropy is
correctly maximized at the equilibrium value of the energy; that is, the same average
energy per particle in the two subsystems.

Now we want to find the maximum of the entropy with respect to NA to confirm
that it occurs at the equilibrium values of NA and NB = N − NA. We find the
maximum in the usual way, by setting the partial derivative with respect to NA equal
to zero.

∂

∂NA
S(EA, VA, NA;EB ,VA, N − NA) =

∂

∂NA
[SA(EA, VA, NA)+SB(EB , VB , N − NA)]

=
∂

∂EA
SA(EA, VA, NA) +

∂NB

∂NA

∂

∂NB
SB(EB , VB, NB)

=
∂

∂NA
SA(EA, VA, NA) − ∂

∂NB
SB(EB, VB, NB)

= 0 (7.8)

This gives us another equilibrium condition, in analogy to eq. (7.5), which will also be
important in thermodynamics.

∂SA

∂NA
=

∂SB

∂NB
(7.9)
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The partial derivative of the entropy with respect to N is rather complicated.

∂S

∂N
=

∂

∂N

[
kN

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]]

= k

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]
+ kN

∂

∂N

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]

= k

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]
+ kN

[
− 3

2N
− 1

N

]

= k

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]
− 5

2
k (7.10)

The condition for equilibrium is to set the partial derivatives with respect to the
number of particles equal in the two subvolumes.

k

[
3
2

ln
(

EA

NA

)
+ ln
(

VA

NA

)
+ X

]
− 5

2
k = k

[
3
2

ln
(

EB

NB

)
+ ln
(

VB

NB

)
+ X

]
− 5

2
k

(7.11)

Because of the equilibrium with respect to energy, we also have eq. (7.7).

EA

NA
=

EB

NB
(7.12)

Combining eqs. (7.11) and eqs. (7.12), we find the equation for equilibrium with
respect to NA.

NA

VA
=

NB

VB
(7.13)

As expected from eq. (4.9), the number of particles per unit volume is the same in
both subsystems.

7.3 The Volume-Dependence of the Entropy

An interesting and important feature of the expression we have derived for the entropy
of the classical ideal gas in eq. (7.2) is that it also correctly predicts the results for a
kind of experiment that we have not yet discussed.

Consider a cylinder, closed at both ends, containing an ideal gas. There is a freely
moving partition, called a piston, that separates the gas into two subsystems. The
piston is made of a diathermal material, so it can transfer energy between the two
systems, but it is impervious to the particles. There are NA particles on one side of the
piston and NB particles on the other. Since the piston can move freely, the volumes
of the subsystems can change, although the total volume, V = VA + VB , is fixed.
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Because the piston can conduct heat, the average energy per particle will be the
same on both sides of the piston, as derived in Chapter 6.

〈EA〉
NA

=
〈EB〉
NB

(7.14)

The maximum of the entropy with respect to the position of the piston is then
found by setting the derivative of the total entropy with respect to VA equal to zero.

∂

∂VA
S(EA, VA, NA;EB ,V − VA, NB) =

∂

∂VA
[SA(EA, VA, NA) + SB(EB, V − VA, NB)]

=
∂

∂VA
SA(EA, VA, NA) +

∂VB

∂VA

∂

∂VB
SB(EB, VB, NB)

=
∂

∂VA
SA(EA, VA, NA) − ∂

∂VB
SB(EB, VB, NB)

= 0 (7.15)

This gives us the equilibrium condition in a familiar form.

∂SA

∂VA
=

∂SB

∂VB
(7.16)

Since the partial derivative of the entropy with respect to volume is

∂S

∂V
= kN

∂

∂V

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]

= kN
∂

∂V
ln
(

V

N

)

=
kN

V
(7.17)

and the equilibrium condition that the particle density is the same in both subsystems
is correctly predicted,

NA

VA
=

NB

VB
(7.18)

How did this happen? It is nice to know that it is true, but why should the
maximum of the entropy with respect to the position of the piston produce the
correct equilibrium volumes? The answer can be found by calculating the probability
distribution for the position of the piston.

Under the usual assumption that all configurations are equally likely (subject to
the constraints), the joint probability density for the positions of the particles and the
position of the piston should be a constant, which we denote as Y .

P (VA, {�rA,i|i = 1, . . . , NA}, {�rB,j |j = 1, . . . , NB}) = Y (7.19)
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To find the marginal probability distribution P (VA), we simply integrate over the
positions of every particle, noting that NA particles are restricted to volume VA, and
NB particles are restricted to volume VB.

P (VA) =
∫

pA,pB

P (VA, {�rA,i|i = 1, . . . , NA}, {�rB,j |j = 1, . . . , NB}) d3NArAd3NArB

= Y V NA

A V NB

B (7.20)

To find the maximum of P (VA) under the condition that VB = V − VA, we
differentiate with respect to VA, and set it equal to zero.

∂

∂VA
P (VA) = Y NAV NA−1

A V NB

B − Y NBV NA

A (V − VA)NB−1 = 0 (7.21)

Solving eq. (7.21), we find the hoped-for result.

NA

VA
=

NB

VB
(7.22)

The key point is that the logarithm of the volume dependence of P (VA) is exactly
the same as that of the entropy. In every case, defining the entropy as the logarithm
of the probability (to within additive and multiplicative constants) gives the correct
answer.

7.4 Indistinguishable Particles

In Chapter 4 we calculated the configurational entropy of a classical ideal gas of
distinguishable particles. On the other hand, from quantum mechanics we know that
atoms and molecules of the same type are indistinguishable. It is therefore interesting
to ask in what way the probability distribution, and consequently the entropy and
other properties of the composite system, would change if we were to assume that the
particles were indistinguishable.

For the following derivation, recall that particles are regarded as distinguishable if
and only if the exchange of two particles produces a different microscopic state. If the
exchange of two particles does not produce a distinct microscopic state, the particles
are indistinguishable.

The question is how to modify the derivation of eq. (4.4) in Chapter 4 to account
for indistinguishability.

The first consequence of indistinguishability is that the binomial coefficient intro-
duced to account for the permutations of the particles between the two subsystems
must be eliminated. Since the particles are indistinguishable, the number of micro-
scopic states generated by exchanging particles is equal to 1.

The second consequence is that the factors (VA/V )NA(1 − VA/V )N−NA in eq. (4.4)
must also be modified.
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Consider our basic assumption that the probability density for the positions of
the particles must be a constant, with the value of the constant determined by the
condition that the probability density be normalized to 1.

For N distinguishable particles in a three-dimensional volume V , the normalization
constant is clearly V −N . The probability of finding a specific set of NA particles in
subvolume VA and the rest in subvolume VB is therefore V NA

A V N−NA

B V −N .
However, calculation for indistinguishable particles is somewhat more difficult.

We cannot label individual particles in a way that distinguishes between them. We
can, however, label the particles on the basis of their positions. If two particles are
exchanged, their labels would also be exchanged, and the state would be unchanged. A
simple way of achieving this is to introduce a three-dimensional Cartesian coordinate
system and label particles in order of their x-coordinates; that is, for any microscopic
state, particles are labeled so that xj < xj+1. For simplicity, we will assume that the
subsystems are rectangular, with edges parallel to the coordinate axes. The lengths
of the subsystems in the x-direction are LA and LB, and the corresponding areas are
AA and AB . Naturally, the volumes are given by VA = AALA and VB = ABLB .

We will follow the same procedure established in Chapters 4 and 6 and assume the
probability distribution in coordinate space to be a constant, which we will denote by
Y (N,V ).

P ({�rj}) = Y (N,V ) (7.23)

The probability of finding NA particles in subvolume VA and NB = N − NA in
subvolume VB is found by integrating over coordinate space. The integrals in the y-
and z-directions just give factors of the cross-sectional areas of the two subsystems.
The integrals over the x-coordinates must be carried out consistently with the labeling
condition that xj < xj+1.

P (NA, NB) = Y (N,V )ANA

A ANB

B

∫ LA

0

dxNA

∫ xNA

0

dxNA−1 · · ·
∫ x2

0

dx1

×
∫ LB

0

dx′
NB

∫ x′
NB

0

dx′
NB−1 · · ·

∫ x′
2

0

dx′
1 (7.24)

I have used primes to indicate the integrals over the x-coordinates in subsystem B.
The integrals in eq. (7.24) are easily carried out by iteration.

P (NA, NB) = Y (N,V )

(
V NA

A

NA!

)(
V NB

B

NB !

)
(7.25)

This gives the probability distribution of identical particles, except for the determina-
tion of the normalization constant, Y (N,V ).

It is clear that the dependence of P (NA, NB) on its arguments for indistinguishable
particles in eq. (7.25) is exactly the same as that for distinguishable particles in
eq. (4.4). This means that we can determine the value of the normalization constant
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by comparison with the normalized binomial distribution in eq. (3.47).

Y (N,V ) =
N !
V N

(7.26)

The full probability distribution for identical particles is found by substituting
eq. (7.26) in eq. (7.25).

P (NA, NB) =
N !
V N

(
V NA

A

NA!

)(
V NB

B

NB !

)
(7.27)

This expression is identical to the probability distribution for distinguishable particles
in eq. (4.4).

Since the entropy is given by the logarithm of the probability distribution, the
entropy of a classical gas is exactly the same for distinguishable and indistinguishable
particles.

The result that the entropy is exactly the same for classical systems with distin-
guishable and indistinguishable particles might be surprising to some readers, since
most of the literature for the past century has claimed that they were different.
My claim that the two models have the same entropy depends crucially on the
definition of entropy that I have used. However, I think we might take as a general
principle that two models with identical properties should have the same entropy.
Since the probability distributions are the same, their properties are the same. It
is hard to see how any definition that results in different entropies for two models
with identical properties can be defended.

7.5 Entropy of a Composite System of Interacting Particles

Up to this point we have considered only an ideal gas, in which there are no interactions
between particles. In real gases, particles do interact: particles can attract each other
to form liquids and they can repel each other to make the liquid difficult to compress.
Fig. 7.1 shows a typical interatomic potential, which is significantly different from zero
only over very short distances.

Even though interatomic potentials are very short-ranged, they can have important
effects, including the formation of liquid and solid phases, with phase transitions
between them. We will return to this topic in Chapters 19 and 30.

To generalize our analysis of the entropy of the classical ideal gas to include
interacting particles, it is useful to go back and re-derive the entropy of the ideal
gas, without taking advantage of the independence of the positions and the momenta.
Our basic assumption is still that of a uniform probability in phase space, consistent
with the constraints on the composite system.
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j(r)

r

a few nanometers

Fig. 7.1 Schematic plot of typical interatomic potential. The potential is significantly different

from zero only over a few nanometers.

7.5.1 The Ideal Gas Revisited

We begin with our assumption from Section 1.4 that the probability distribution in
phase space is uniform, subject to the constraints. The physical constraints are:

1. NA particles are in subsystem A and NB in subsystem B.
2. Subsystem A has an energy EA and subsystem B has an energy EB .

Instead of doing the integrals separately for the configurations and the momenta,
we can write the final result for P (EA, VA, NA;EB , VB , NB) as an integral over all
of phase space, with Dirac delta functions imposing the energy constraints as before.
This does not simplify matters for the ideal gas, but it will make the generalization
to real gases easier.

Calculating the probability distribution for the energies, volumes, and numbers
of particles of each subsystem is straightforward, but the expression becomes a little
unwieldy. While it is great fun for a teacher to write it across two or three blackboards
so that students can see it as a whole, the constraints of a book make it somewhat more
difficult to write out completely. To make it manageable, we will use the same compact
notation that we used earlier for the integrals over phase space. The 3NA-dimensional
integral over the positions of the particles in subsystem A will be indicated as

∫
dqA,

and similarly for the other variables. Integrals over quantities without subscripts refer
to the entire composite system.

Write the Hamiltonian of the subsystem as

Hα(qα, pα) =
3Nα∑
j=1

|�pj,α|2
2m

(7.28)
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where α = A or B to indicate the subsystems. If the subscript is omitted, then the
expression refers to the entire composite system. To make the notation more compact
we will write Hα to indicate Hα(Eα, Vα, Nα).

The marginal probability distribution for the energies, volumes, and number of
particles of each subsystem is then found by integrating over all of the space.

P (EA, VA, NA;EB, VB , NB) =

N !
NA!NB !

∫
dqA

∫
dpA

∫
dqB

∫
dpBδ(EA − HA)δ(EB − HB)∫

dq
∫

dpδ(E − H)
(7.29)

Because the particles in the two subsystems do not interact with each other,
eq. (7.29) can be written in a more compact form by introducing a function

Ωα(Eα, Vα, Nα) =
1

h3NαNα!

∫
dqα

∫
dpαδ(Eα − Hα(qα, pα)) (7.30)

where we have written Hα(qα, pα) for clarity. Note that we have included a factor of
h−3Nα in the expression for Ωα. This factor is not required classically, but it is allowed
since we can always multiply the right side of eq. (7.29) by 1 = hN/hNAhNB . We
will see later that this simple modification produces consistency between the classical
result for the ideal gas and the classical limit of a quantum ideal gas.

With this notation, eq. (7.29) becomes

P (EA, VA, NA;EB , VB , NB) =
ΩA(EA, VA, NA)ΩB(EB, VB , NB)

Ω(E, V,N)
(7.31)

Taking the logarithm of the probability distribution in eq. (7.31), in analogy to
eq. (4.18), we find the expression for the entropy of the composite system.

Stot(EA, VA, NA;EB , VB , NB) = k ln [P (EA, VA, NA;EB , VB, NB)] + S(E, V,N)

= SA(EA, VA, NA) + SB(EB, VB, NB) (7.32)

The entropy of an isolated system is given by the logarithm of Ω.

S(E, V,N) = k ln Ω(E, V,N) (7.33)

Eq. (7.32) shows that the total entropy of an ideal gas is additive. It will be left
as an exercise to show that this expression for the entropy of a classical ideal gas is
identical to that in eq. (7.2)—including the value of the constant X given in eq. (7.3).

Note that we have introduced a new constant, h, into eq. (7.31). It is easy to confirm
that this expression for the probability distribution is still equivalent to eq. (7.29)
for any value of h, so that this new constant is completely arbitrary, and therefore
meaningless within classical statistical mechanics. It has been introduced solely for the
purpose of ensuring consistency with quantum statistical mechanics. It is a remarkable
fact that the choice of h as Planck’s constant produces agreement with quantum
statistical mechanics in the classical limit. This probably seems rather mysterious at
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this point, but it will become clear when we return to this question in Chapters 26,
27, and 28.

7.5.2 Generalizing the Entropy to Interacting Particles

We do not need to make any changes in our fundamental assumptions about the
probability distribution in phase space to find the entropy of a system with interacting
particles. We still assume a uniform probability distribution in phase space, subject
to the physical constraints of our composite system. The only difference is that the
energy now includes interaction terms. However, because it is possible for a molecule in
one subsystem to interact with a molecule in the other subsystem, the separability of
the entropy of the composite system into the sum of the entropies for each subsystem
is no longer trivial.

First write the Hamiltonian of the composite system.

H(q, p) =
3N∑
j=1

|�pj |2
2m

+
3N∑
j=1

3N∑
i=1,i �=j

φ(�ri, �rj) (7.34)

or

H(q, p) =
3NA∑
j=1

|�pj,A|2
2m

+
3NB∑
j=1

|�pj,B |2
2m

+
3NA∑
j=1

3NA∑
i=1,i �=j

φ(�ri,A, �rj,A) +
3NB∑
j=1

3NB∑
i=1,i �=j

φ(�ri,B, �rj,B)

+
3NA∑
j=1

3NB∑
i=1

φ(�ri,A, �rj,B) (7.35)

This equation is written two ways. First, as a single, composite system, and then
broken into pieces, representing the subsystems. The last term on the right in eq.(7.35)
represents the interactions between particles in different subsystems. This is the term
that causes difficulties in separating the entropy of the composite system into a sum
of entropies of the subsystems.

We can define the Hamiltonian of subsystem A.

HA(qA, pA) =
3NA∑
j=1

|�pj,A|2
2m

+
3NA∑
j=1

3NA∑
i=1,i>j

φ(�ri,A, �rj,A) (7.36)

The limit of i > j in the second sum over positions is there to prevent double counting.
Similarly, we can define the Hamiltonian of subsystem B.

HB(qB, pB) =
3NB∑
j=1

|�pj,B|2
2m

+
3NB∑
j=1

3NB∑
i=1,i �=j

φ(�ri,B, �rj,B) (7.37)
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However, because of the interaction term linking the two subsystems,

HAB(qA, qB) =
3NA∑
j=1

3NB∑
i=1

φ(�ri,A, �rj,B) (7.38)

the total Hamiltonian is not just the sum of HA and HB.

H(q, p) = HA(qA, pA) + HB(qB , pB) + HAB(qA, qB) (7.39)

To analyze a composite system of interacting particles, it turns out to be easier to
use delta functions to specify EA and E in calculating the marginal probability than
it is to specify EA and EB .

P (EA, VA, NA;E − EA, VB , NB) =

N !
NA!NB!

∫
dqA

∫
dpA

∫
dqB

∫
dpBδ(EA − HA)δ(E − H)∫

dq
∫

dpδ(E − H)
(7.40)

Now modify eq. (7.40) by replacing E with EA + EB and using the presence of the
first delta function δ(EA − HA) to replace EA with HA in the second delta function.

P (EA, VA, NA;EB, VB , NB) =

N !
NA!NB !

∫
dqA

∫
dpA

∫
dqB

∫
dpBδ(EA − HA)δ(EB − HB − HAB)∫
dq
∫

dpδ(E − H)
(7.41)

The interaction term, HAB , prevents eq. (7.41) from separating exactly into factors.
Fortunately, the range of the interactions between molecules in most materials

(or between particles in colloids) is short in comparison with the size of the system.
Therefore, the contributions to HAB are only significant for molecules in different
subsystems that are close to each other. Since the range of molecular interactions is
only a few nanometers, this means that only pairs of molecules very close to the inter-
face between the two subsystems contribute at all. The energy corresponding to these
direct interactions between molecules in different systems is therefore proportional to
the size of the interface, which scales as the surface area, or V

2/3
α .

In terms of the number of particles, the contribution of the direct interactions
between molecules in different subsystems is proportional to N

2/3
α , so that the relative

contribution is proportional to N
2/3
α /Nα = N

−1/3
α . For example, if Nα ≈ 1021, then

N
−1/3
α ≈ 10−7. This is can be regarded as a very good approximation. However, it

should be noted that the effect of these interface interactions is considerably larger
than the statistical fluctuations, which scale as 1/

√
Nα. Interface or surface effects

must also be taken more seriously for colloids, which might only contain 1012 particles,
so the relative contribution of the interface interactions could be of the order 10−4.
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If the interaction term, HAB , can be neglected, eq. (7.41) can be separated into
factors.

P (EA, VA, NA;EB, VB , NB) =

N !
NA!NB !

∫
dqA

∫
dpAδ(EA − HA)

∫
dqB

∫
dpBδ(EB − HB)∫

dq
∫

dpδ(E − H)
(7.42)

The factors in eq. (7.42) can be made explicit by introducing a generalized Ω function,

Ωα(Eα, Vα, Nα) =
1

h3NαNα!

∫
dqα

∫
dpαδ(Eα − Hα) (7.43)

and writing

P (EA, VA, NA;EB , VB , NB) =
ΩA(EA, VA, NA)ΩB(EB, VB , NB)

Ω(E, V,N)
(7.44)

As before, the subscript α can take on the values of A or B to represent a subsystem,
or be missing entirely to represent the full system. The parameter h is still completely
arbitrary within classical statistical mechanics. As mentioned above, h will be iden-
tified as Planck’s constant in Chapters 26, 27, and 28 to ensure consistency with the
classical limit of the corresponding quantum system.

Now that we have expressed the probability distribution for interacting classical
particles as a product of terms, we can define the entropy by taking the logarithm and
multiplying it by the constant. The result is formally the same as eq. (7.32) for ideal
gases.

Stot(EA, VA, NA;EB , VB , NB) = k ln [P (EA, VA, NA;EB , VB, NB)] + S(E, V,N)

= SA(EA, VA, NA) + SB(EB, VB, NB) (7.45)

The entropy terms of individual systems are again given by logarithm of the Ω
functions.

Sα(Eα, Vα, Nα) = k ln Ωα(Eα, Vα, Nα) (7.46)

= k ln
[

1
h3NαNα!

∫
dqα

∫
dpαδ(Eα − Hα)

]

7.6 The Second Law of Thermodynamics

As was the case for ideal gases, the probability distributions for energy, volume, and
number of particles in composite systems of interacting particles are very narrow—
generally given by the square root of the number of particles. The width of the
probability distributions will therefore again be much smaller than experimental errors.
For systems of interacting particles, the observed values of the energy, volume, and
number of particles will agree with the location of the maxima of the corresponding
probability distributions to within the accuracy of the experiment.



84 Classical Gases: Ideal and Otherwise

A comparison of eq. (7.42) for the probabilities in a compound system of interacting
particles and eq. (7.44) for the entropy of the composite system shows that the location
of the maximum of the entropy gives the equilibrium values of the quantity of interest
when the corresponding internal constraints are released.

This is an extremely important result for two reasons.
First, it allows us to find the equilibrium values of the energy, volume, or number

of particles for any experimental situation, once the entropy is known.
Second, if the entropy is maximized for unconstrained equilibrium, it necessarily

follows that any constrained macroscopic state of the composite system must have a
lower total entropy. This is the Second Law of Thermodynamics.

If the composite system is in any constrained macroscopic state—that is, if there
are any constraints on the energy, volume, or number of particles in any subsystem—
the total entropy of the composite system cannot decrease if those constraints are
removed.

7.7 Equilibrium between Subsystems

For a composite system composed of two general, classical subsystems, the
total entropy is the sum of the entropies of the subsystems, as indicated in
eq. (7.45).

Stot(EA, VA, NA;EB , VB , NB) = SA(EA, VA, NA) + SB(EB , VB , NB) (7.47)

Since the total entropy is maximized upon release of a constraint, we can determine
the new equilibrium parameters by setting the appropriate partial derivative of the
total entropy equal to zero.

For example, consider a situation in which the volumes and numbers of particles
are held fixed in the subsystems, but the subsystems are connected by a diathermal
wall. Equilibrium is found from the partial derviative with respect to EA, with
EB = E − EA.

∂

∂EA
Stot(EA, VA, NA;E − EA, VB , NB) =

∂

∂EA
SA(EA, VA, NA) +

∂

∂EA
SB(E − EA, VB , NB) = 0 (7.48)

Since EB = E − EA, it must be that ∂EA/∂EB = −1, and we can rewrite eq. (7.48)
in a symmetric form.

∂

∂EA
SA(EA, VA, NA) = −∂EA

∂EB

∂

∂Eb
SB(EB , VB , NB) (7.49)

or

∂SA

∂EA
=

∂SB

∂EB
(7.50)
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Eq. (7.50) is extremely important. Beyond giving us an algorithm for finding the
equilibrium value of EA, it tells us that the condition of equilibrium is that a derivative
of the entropy with respect to the energy has the same value for two subsystems in
thermal contact.

Similar arguments show that the condition for equilibrium with respect to volume
when two subsystems are separated by a moveable piston is given by

∂SA

∂VA
=

∂SB

∂VB
(7.51)

and equilibrium with respect to particle number when a hole is made in the wall
between two subsystems is given by

∂SA

∂NA
=

∂SB

∂NB
(7.52)

These last three equations are extremely important, both as a means of solving
problems and as the basis for establishing the connection between statistical mechanics
and thermodynamics. The explicit relationships between these derivatives and familiar
quantities like temperature and pressure will be the subject of the following chapter.
However, the first and arguably the most important consequence of these equations is
presented in the next section.

7.8 The Zeroth Law of Thermodynamics

An immediate consequence of eqs. (7.50), (7.51), and (7.52) is that if two systems are
each in equilibrium with a third system, they must also be in equilibrium with each
other.

Assume systems A and B are in equilibrium with respect to energy, then eq. (7.50)
holds. If systems B and C are also in equilibrium with respect to energy, then we
have a similar equation for the partial derivatives of SB and SC with respect to
energy.

∂SA

∂EA
=

∂SB

∂EB
=

∂SC

∂EC
(7.53)

Since the partial derivatives with respect to energy must be the same for systems A
and C, they must be in equilibrium with respect to energy.

Clearly, this argument is equally valid for the volume or the number of particles.
We therefore have a general principle that if two systems are each in equilibrium with
a third system, then they are in equilibrium with each other.

This is the Zeroth Law of Thermodynamics.

The numbering of the laws of thermodynamics might seem rather strange—
especially the ‘zeroth’. The need to state it explicitly as a law of thermodynamics
was not recognized during the nineteenth century when thermodynamics was being
developed, perhaps because it is so fundamental that it seemed obvious. When it
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was declared a law of thermodynamics, the numbers for the other laws had long
been well established. Ralph H. Fowler (British physicist and astronomer, 1889–
1944) is credited with calling it the Zeroth Law to place it in the leading position.
At this point in the book we have encountered only the Second and Zeroth Laws
of Thermodynamics. The First and Third Laws are yet to come.

7.9 Problems

Problem 7.1

General forms for the entropy

We have derived the entropy of a classical ideal gas, which satisfies all the postulates
of thermodynamics (except the Nernst postulate, which applies to quantum systems).
However, when interactions are included, the entropy could be a very different function
of U , V , and N . Here are some functions that are candidates for being the entropy of
some system. [In each case, A is a positive constant.]

1. Which of the following equations for the entropy satisfy the postulates of ther-
modynamics (except the Nernst postulate)?

1. S = A (UV N)1/3

2. S = A

(
NU

V

)2/3

3. S = A

(
UV

N

)
.

4. S = A

(
V 3

NU

)
2. For each of the valid forms of the entropy in the previous part of the problem,

find the three equations of state.

Problem 7.2

The “traditional” expression for the entropy of an ideal gas of distinguish-
able particles

It is claimed in many textbooks on statistical mechanics that the correct entropy for
a classical ideal gas of distinguishable particles differs from what we derived in class.
The traditional expression is

S(E, V,N) = kBN

[
3
2

ln
(

E

N

)
+ ln (V ) + X

]
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Assume that you have two systems, A and B, with NA and NB particles and VA

and VB volumes respectively, which are both described by an entropy of this form.
Consider an experiment in which the volumes are fixed, but a hole is made in the

wall separating the two subsystems.
Calculate the location of the maximum of the total traditional entropy to determine

its prediction for the equilibrium distribution of the energy and the particles between
the two systems.

Naturally, your answer should depend on the relative sizes of the fixed volumes,
VA and VB .
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Temperature, Pressure, Chemical
Potential, and All That

Pressure makes diamonds.
General George S. Patton

In this chapter we will discuss the temperature, T , the pressure, P , and the chemical
potential, μ. We will find explicit expressions for these three quantities in terms
of partial derivatives of the entropy with respect to energy, volume, and number
of particles. In doing so, we will complete the foundations of classical statistical
mechanics.

In Chapter 9, which begins Part II, we will see how the structure of statistical
mechanics provides a foundation for thermodynamics. The rest of the chapters in
Part II complete the development of the theory of thermodynamics.

In Part III we shall return to classical statistical mechanics. While the equations
developed in Part I are (in my opinion) the clearest way to understand the assumptions
of statistical mechanics, the new methods developed in Part III are much more
powerful for practical calculations.

8.1 Thermal Equilibrium

We have seen in Section 7.8 that if two objects are in thermal equilibrium with each
other (equilibrium with respect to energy exchange), then the partial derivative of
the entropy with respect to energy must have the same value in both systems. We
also know that if two systems are in thermal equilibrium, they must be at the same
temperature. Therefore, the partial derivative of the entropy with respect to energy
must be a unique function of temperature. One purpose of this chapter is to determine
the nature of that function.

After we have determined the relationship between the temperature and the partial
derivative of the entropy with respect to energy, we will find similar relationships
between other partial derivatives of the entropy and the pressure and chemical
potential.

In all cases, the relationships linking T , P , and μ with partial derivatives of the
entropy will be valid for all systems. This is a very powerful statement. It means that
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if we can calculate the entropy as a function of E, V , and N , we can calculate all
thermal properties of the system. For this reason, the entropy as a function of energy,
volume, and number of particles,

S = S(E, V,N) (8.1)

is known as a ‘fundamental relation’. We will see later that there are a number of other
functions that also contain the same, complete thermodynamic information about a
system, which makes them equivalent to eq. (8.1). Such functions are also known as
fundamental relations.

8.2 What do we Mean by ‘Temperature’?

For most of us, temperature is the reading we obtain from a thermometer . The basic
property of a thermometer is that it undergoes some sort of physical change that can
be measured when it is heated or cooled. The most readily available thermometer is
our own body. It shivers when it is cold, and sweats when it is hot. These are subjective
measures, but they do form the basis for our intuitive understanding of temperature.

To make the definition of temperature objective, we need to choose something that
will provide a theoretical and experimental standard, as well as a numerical scale. We
will use the ideal gas for this purpose. Since we can calculate all of the properties
of an ideal gas, we can determine how its volume or pressure will change when it is
heated or cooled. Since we can do experiments on real dilute gases, we can relate our
definition of temperature to the real world.

The basic equation we will use to uniquely define the thermodynamic temperature,
is the ideal gas law.

PV = NkBT (8.2)

The pressure P in this equation is defined as the average force per unit area. The
constant kB is called Boltzmann’s constant. It has units of Joules per degree, and
relates the temperature scale to the energy scale. Eq. (8.2) is often written as

PV = nRT (8.3)

where n = N/NA is the number of moles (NA = 6.0221415 × 1023 being Avogadro’s
number), and R = NAkB is known as the ideal gas constant. The experimental
identification of the temperature as being proportional to the pressure for fixed volume,
or the volume for fixed pressure, coincides with our notion that gas expands, or its
pressure increases, when heated.

Although the ideal gas law is well known experimentally, to make contact with
the entropy we must derive it from the properties of the ideal gas found in previous
sections. What we will actually do in the next section is prove that the ratio PV/N
is equal to a certain property of a thermal reservoir, and then use eq. (8.2) to
associate that property with the temperature. This derivation will give us the universal
relationship between the temperature and ∂S/∂E.
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8.3 Derivation of the Ideal Gas Law

The first step in the derivation of the ideal gas law is to derive the Maxwell–Boltzmann
equation for the probability density of the momentum of one ideal gas particle. We
will then use this probability density to determine the pressure due to collisions on the
walls containing an ideal gas. This will lead us to the ideal gas law and the definition
of the temperature in terms of the partial derivative of the entropy with respect to
the energy.

8.3.1 The Maxwell–Boltzmann Equation

We are interested in the properties of a single particle in an ideal gas, and it does not
matter which particle we choose, since they all have the same probability density. We
can find that probability density as a marginal density of the full probability density
in phase space. If the total energy of the system is E, the full probability density is
given by

P (p, q) =
1

Ω(E, V,N)
1

h3NN !
δ(E − H(p, q)) (8.4)

where

Ω(E, V,N) =
1

h3NN !

∫
dp

∫
dq δ(E − H(p, q)) (8.5)

and we have used the compact notation p = {�pj |j = 1, 2, . . . , N} and q = {�rj |j = 1,
2, . . . , N}.

As a first step, we will find the marginal probability density for both the momentum
and position of particle 1 by integrating P (p, q) in eq. (8.4) over all variables except
�p1 and �r1.

P (�p1, �r1) =
∫

d3p2 . . . d3pN

∫
d3r2 . . . d3rNP (p, q)

=
1

Ω(E, V,N)
1

h3NN !

∫
d3p2 . . . d3pN

∫
d3r2 . . . d3rNδ(E − HN (p, q)) (8.6)

In eq. (8.6), HN is the Hamiltonian of the N -particle system.
We can write the integral in eq. (8.6) in terms of the functon Ω for a system with

N − 1 particles.

Ω
(
E − |�p1|2/2m,V,N − 1

)
=

1
h3(N−1)(N − 1)!

∫
dp2 . . . dp3N

×
∫

d3r2 . . . d3rNδ

⎛
⎝E − |�p1|2/2m −

3N∑
j=2

p2
j/2m

⎞
⎠ (8.7)
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Note that the energy term, |�p1|2/2m, has been separated from the rest of the
Hamiltonian because it has not been integrated out. With this notation, eq. (8.6)
can be written compactly.

P (�p1, �r1) =
Ω(E − |�p1|2/2m,V,N − 1)

Nh3Ω(E, V,N)
(8.8)

Since P (�p1, �r1) does not depend explicitly on �r1, we can easily integrate it out to
obtain

P (�p1) =
V

Nh3

Ω(E − |�p1|2/2m,V,N − 1)
Ω(E, V,N)

(8.9)

We would like to take advantage of the fact that |�p1|2/2m is very small in
comparison to E. We can exploit this by taking the logarithm of eq. (8.9), treating
|�p1|2/2m as a small perturbation and keeping only the leading terms.

lnP (�p1) = ln Ω(E − |�p1|2/2m,V,N − 1)

− ln Ω(E, V,N) + ln
(

V

Nh3

)

≈ ln Ω(E, V,N − 1) − |�p1|2
2m

∂

∂E
ln Ω(E, V,N − 1)

− ln Ω(E, V,N) + ln
(

V

Nh3

)
(8.10)

The higher-order terms in the expansion are extremely small because the average value
of |�p1|2/2m is a factor of N smaller than E.

The first thing to note about eq. (8.10) is that only the second term depends on �p1.
The second thing to note about eq. (8.10) is that the approximation

∂

∂E
ln Ω(E, V,N − 1) ≈ ∂

∂E
ln Ω(E, V,N) (8.11)

is extremely good. The error is only of order 1/N .
The derivative of ln Ω with respect to energy turns out to be so important that it

has been assigned a special Greek letter.

β ≡ ∂

∂E
ln Ω(E, V,N) (8.12)

We can now rewrite eq. (8.10) in a much simpler form.

P (�p1) = −β|�p1|2/2m + constants (8.13)
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Since the constants in this equation are determined by the normalization condition,
we can complete the derivation of P (�p1).

P (�p1) =
(

2πm

β

)3/2

exp
(
−β

|�p1|2
2m

)
(8.14)

This is the Maxwell–Boltzmann probability density for the momentum of a single
particle.

The expansion used in deriving P (�p1) is extremely valuable in statistical mechanics.
This is the first time it appears in this book, but far from the last.

Note that the three components of the momentum are independent, so that the
probability density of a single component can be found easily by integrating out the
other two.

P (p1,x) =
√

2πm

β
exp

(
−β

p2
1,x

2m

)
(8.15)

8.3.2 The Pressure in an Ideal Gas

From the Maxwell–Boltzmann probability density for the momenta, we can calculate
the pressure by integrating over the collisions that occur during a time Δt.

Consider a flat portion of the wall of the container of an ideal gas with area A. (The
assumption of flatness is not necessary, but it makes the derivation much easier.) Define
a coordinate system such that the x-axis is perpendicular to the wall. To simplify the
problem, note that the y- and z-components of a particles momentum do not change
during a collision with the wall, so that they do not transfer any momentum to the
wall and do not affect the pressure. This reduces the calculation to a one-dimensional
problem.

By Newton’s Second Law, the average force on the wall during a time-period Δt
is given by the total momentum transferred to the wall during that period.

FΔt =
∫

collisions

ΔpxP (px,Δt)dpx (8.16)

P (px,Δt) is the probability of a particle hitting the wall during the time Δt, and the
integral goes over all particles that hit the wall during that period of time. Since we
intend to make Δt small, we do not have to include particles that might hit the wall
a second time after bouncing off a different part of the container.

Let the wall be located at x = 0, with the particles confined to x < 0. Then particles
will hit the wall only if they are within a distance Δt vx = Δt px/m of the wall, where
m is the mass of a particle. Letting the area of the wall be denoted by A, the volume
of particles that will hit the wall is AΔt px/m. The average number of particles in
that volume is NAΔtpx/V m, where N is the total number of particles, and V is the
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total volume. If we first multiply the number of particles in the volume by P (px)
(the probability density of the momentum from eq. (8.14)), then multiply that by the
momentum transfer, Δpx = 2px, and finally integrate over the momentum, we have
the total momentum transfer to the wall during Δt, which is equal to the average force
times Δt.

FΔt =
∫ ∞

0

√
2πm

β
exp
(
−β

p2
2

2m

)
2px

NAΔtpx

V m
dpx (8.17)

Note that the integral extends only over positive momenta; particles with negative
momenta are moving away from the wall.

Using the definition of the pressure as the force per unit area, P = F/A, eq. (8.17)
becomes an equation for the pressure.

P =
2N

V m

√
2πm

β

∫ ∞

0

exp
(
−β

p2
2

2m

)
p2

xdpx (8.18)

The integral in eq. (8.18) can be carried out by the methods discussed in
Section 3.10. You could also look up the integral in a table, but you should be able to
work it out by yourself. The result is surprisingly simple.

PV = Nβ−1 (8.19)

Eq. (8.19) should be compared with the usual formulation of the ideal gas law,

PV = NkBT (8.20)

where kB is known as Boltzmann’s constant. This comparison allows us to identify β
with the inverse temperature.

β =
1

kBT
(8.21)

Because of the Zeroth Law, we can use an ideal-gas thermometer to measure the
temperature of anything, so that this expression for β must be universally true.

8.4 Temperature Scales

Although we are all familiar with the thermometers that we use every day, the
temperature scale in the previous section is rather different than those commonly
found in our homes. First of all, eq. (8.2) makes it clear that T cannot be negative;
but both temperature scales in common use—Celsius and Fahrenheit—do include
negative temperatures.

The Celsius temperature scale is defined by setting the freezing point of water equal
to 0◦ C, and the boiling point of water equal to 100◦ C. The Celsius temperature is then
taken to be a linear function of the temperature T given in eq. (8.2). Operationally,
this could be roughly carried out by trapping a blob of mercury in a glass tube at
high temperature, and measuring the position of the mercury in freezing water and
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in boiling water. I actually carried out this experiment in high school, before people
were quite aware of the toxicity of mercury.

Using the Celsius temperature scale we can extrapolate to zero volume of the gas.
Done carefully, it extrapolates to a temperature of −273.15◦ C, which is known as
‘absolute zero’ because it is the lowest possible temperature.

For the rest of this book we will use the Kelvin temperature scale, which is shifted
from the Celsius scale to agree with eq. (8.2) and make zero temperature fall at
absolute zero.

T (◦K) = T (◦C) + 273.15 (8.22)

Although eq. (8.22) seems quite simple, it is easy to forget when doing problems.
A very common error in examinations is to use the Celsius temperature scale when
the Kelvin scale is required.

Since we are following tradition in defining the Celsius and Kelvin temperature scales,
the value of Boltzmann’s constant is fixed at kB = 1.380658 × 10−23J K−1. If we
were to have thermometers that measure temperature in Joules, Boltzmann’s constant
would simply be 1.

8.5 The Pressure and the Entropy

From the explicit expression for the entropy of the classical ideal gas in eq. (7.2), we
can find the derivative of the entropy with respect to the volume.(

∂S

∂V

)
E,N

= kN
∂

∂V

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]
(8.23)

= kN
1
V

This relationship is only true for the ideal gas. By comparing eq. (8.23) with the ideal
gas law, eq. (8.2), we find a simple expression for the partial derivative of entropy with
respect to volume that is true for all macroscopic systems.(

∂S

∂V

)
E,N

=
kP

kB T
(8.24)

At this point we will make the standard choice to set the constant k that we first
introduced in eq. (4.16) equal to Boltzmann’s constant, k = kB . Eq. (8.24) now
becomes (

∂S

∂V

)
E,N

=
P

T
(8.25)

This is the formal thermodynamic relationship between entropy and pressure.
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8.6 The Temperature and the Entropy

By comparing eqs. (7.30), (8.12), and (8.21), we can see that

(
∂S

∂E

)
V,N

= kBβ =
1
T

(8.26)

Because of the Zeroth Law, this relationship must be valid for all thermodynamic
systems. It is sometimes used as the definition of temperature in books on thermody-
namics, although I have always felt that eq. (8.26) is too abstract to be a reasonable
starting point for the study of thermal systems. One of the purposes of the first part
of this book is to explain the meaning of eq. (8.26). If that meaning is clear to you
at this point, you will be in a good position to begin the study of thermodynamics in
the next part of the book.

Since we know the entropy of the classical ideal gas from eq. (7.2), we can evaluate
the derivative in eq. (8.26) explicitly.

(
∂S

∂E

)
E,N

= kBN
∂

∂E

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]

= kBN
3

2E
=

1
T

(8.27)

The last equality gives us the energy of the classical ideal gas as a function of
temperature.

E =
3
2
NkBT (8.28)

An interesting consequence of eq. (8.28) is that the average energy per particle is
just

E

N
=

3
2
kBT (8.29)

which is independent of the particle mass. This is a simple example of the equipartition
theorem, which we will return to in Chapter 19.

8.7 The Entropy and the Chemical Potential

The chemical potential, μ, is related to the number of particles in much the same
way that the temperature is related to the energy and the pressure is related to the
volume. However, while we do have thermometers and pressure gauges, we do not have
a convenient way of directly measuring the chemical potential. This makes it difficult
to develop our intuition for the meaning of chemical potential in the way we can for
temperature and pressure.
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On the other hand, it is straightforward to define the chemical potential in analogy
with eqs. (8.26) and (8.25). (

∂S

∂N

)
E,V

=
−μ

T
(8.30)

For the classical ideal gas, we can find an explicit equation for the chemical
potential from the equation for the entropy.

μ = −T
∂

∂N

[
kBN

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]]

= −kBT

[
3
2

ln
(

E

N

)
+ ln
(

V

N

)
+ X

]
− kBTN

[
− 3

2N
− 1

N

]

= −kBT

[
3
2

ln
(

3
2
kBT

)
+ ln
(

V

N

)
+ X − 5

2

]
(8.31)

The complexity of this expression probably adds to the difficulty of acquiring an
intuitive feeling for the chemical potential. Unfortunately, that is as much as we can
do at this point. We will revisit the question of what the chemical potential means
several times in this book, especially when we discuss Fermi–Dirac and Bose–Einstein
statistics in Chapters 26, 27, and 28.

8.8 The Fundamental Relation and Equations of State

We have seen that derivatives of the entropy with respect to energy, volume, and
number of particles give us three equations for the three variables T , P , and μ, so that
we have complete information about the behavior of the thermodynamic system. For
this reason,

S = S(E, V,N) (8.32)

is called a fundamental relation. Specifically, it is called the fundamental relation in
the entropy representation, because the information is given in the functional form of
the entropy. There are also other representations of the same complete thermodynamic
information that we will discuss in Chapter 12.

The derivatives of the entropy give what are called ‘equations of state’, because
they give information concerning the thermodynamic state of the system. Since there
are three derivatives, there are three equations of state for a system containing only
one kind of particle. The equations of state for the classical ideal gas are given in
eqs. (8.28), (8.2), and (8.31).

Note that although it is quite common to hear PV = NkBT referred to as ‘the’
equation of state, it is only valid for the classical ideal gas, and even then it is only
one of three equations of state.

For a general thermodynamic system, the three equations of state are independent.
If all three are known, the fundamental relation can be recovered (up to an integration
constant).
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On the other hand, as we will see in Chapter 13, only two of the equations of state
are independent for extensive systems—that is, systems for which the entropy, energy,
volume, and number of particles are all proportional to each other. In that case, only
two equations of state are needed to recover the fundamental relation.

While the fundamental relation contains complete information about a thermody-
namic system, a single equation of state does not. However, equations of state are still
very important because, under the right circumstances, one equation of state might
have exactly the information required to solve a problem.

8.9 The Differential Form of the Fundamental Relation

Much of thermodynamics is concerned with understanding how the properties of a
system change in response to small perturbations. For this reason, as well as others
that we will see in later chapters, the differential form of the fundamental relation is
very important.

A small change in the entropy due to small changes in the energy, volume, and
number of particles can be written formally in terms of partial derivatives.

dS =
(

∂S

∂E

)
V,N

dE +
(

∂S

∂V

)
E,N

dV +
(

∂S

∂N

)
E,V

dN (8.33)

From the equations of state we can rewrite eq. (8.33) in a very useful form.

dS =
(

1
T

)
dE +

(
P

T

)
dV −

( μ

T

)
dN (8.34)

This is known as the differential form of the fundamental relation in the entropy
representation.

8.10 Thermometers and Pressure Gauges

As mentioned above, the most important characteristic of a thermometer is that it
shows a measurable and reproducible change when its temperature changes.

The next most important characteristic of a thermometer is that it should be
small in comparison to the system in which you are interested. Energy will have to
flow between the system and the thermometer, but the amount of energy should be
small enough so that the temperature of the system of interest does not change.

A ‘pressure gauge’ must satisfy the same condition of ‘smallness’. It must have
some observable property that changes with pressure in a known way, and it must be
small enough not to affect the pressure in the system being measured.

8.11 Reservoirs

In studying thermodynamics it will often be useful to invoke a thermal reservoir at
a fixed temperature, so that objects brought into contact with the reservoir will also
come to equilibrium at the same temperature. The most important characteristic of
a ‘reservoir’ is that it must be very large in comparison to other systems of interest,
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so that its temperature does not change significantly when brought into contact with
the system of interest.

We will also find it useful to extend the concept of a reservoir to include a source
of particles at a fixed chemical potential, or a large container of gas that can maintain
a fixed pressure when connected to the system of interest through a piston.

8.12 Problems

Problem 8.1

Equilibrium between two systems

Consider a mysterious system X. The energy-dependence of entropy of system X has
been determined to be

SX(UX , VX , NX) = kBNX

[
A

(
UX

VX

)1/2

+ B

]

where A and B are positive constants.
Suppose that system X has been put into thermal contact with a monatomic ideal

gas of N particles and the composite system has come to equilibrium.

1. Find an equation for UX in terms of the energy of the ideal gas.
[You do not have to solve the equation.]

2. What is the temperature of the ideal gas as a function of UX , VX , and NX?
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9

The Postulates and Laws
of Thermodynamics

In this house, we OBEY the laws of thermodynamics!
Homer Simpson (Dan Castellaneta, American actor and writer)

9.1 Thermal Physics

With this chapter we begin the formal study of thermodynamics, which represents a
detour from the development of the foundations of classical statistical mechanics that
we began in Part I. We will return to statistical mechanics in Parts III and IV.

The theories of statistical mechanics and thermodynamics deal with the same
physical phenomena. In many cases it is possible to derive exactly the same equations
from either theory, although not necessarily with equal ease. In no case do the
two theories contradict each other. Nevertheless, they do have different origins, and
are based on very different assumptions. Because of the different points of view
that accompanied the development of thermodynamics and statistical mechanics,
it is easy to become confused about what is an assumption and what is a derived
result.

The task of keeping assumptions and results straight is made more difficult by the
traditional description of thermodynamic ideas by the terms ‘postulates’ and ‘laws’,
since a postulate or law in thermodynamics might also be regarded as being derived
from statistical mechanics.

9.1.1 Viewpoint: Statistical Mechanics

The foundations of statistical mechanics lie in the assumption that atoms and
molecules exist and obey the laws of either classical or quantum mechanics. Since
macroscopic measurements on thermal systems do not provide detailed information
on the positions and momenta (or the many-particle wave function) of the 1020 or more
atoms in a typical object, we must also use probability theory and make assumptions
about a probability distribution in a many-dimensional space.

On the basis of the assumptions of statistical mechanics, we can write down a
formal expression for the entropy as the logarithm of the probability of a composite
system, as we did for classical statistical mechanics in Part I. In some simple cases,
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such as the classical ideal gas, we can even obtain a closed form expression for the
entropy. In most cases we must make approximations.

In Part I, we found an explicit expression for the entropy of the classical ideal gas,
which allows us to understand the properties of the entropy for this simple system.
We also presented arguments that certain properties of the entropy should not change
when interactions between particles are included in the calculation.

The point of view taken in this book is that statistical mechanics is the more
fundamental theory. Thermodynamics is based on assumptions that can be under-
stood in the context of statistical mechanics. What we will call the ‘Postulates of
Thermodynamics’ and the ‘Laws of Thermodynamics’ are, if not theorems, at least
plausible consequences of the theory of statistical mechanics.

Molecular theory and statistical mechanics provide a fundamental explanation and
justification of thermodynamics. We might as well take advantage of them.

9.1.2 Viewpoint: Thermodynamics

Thermodynamics was defined in Chapter 1 as the study of everything connected with
heat. The field was developed in the nineteenth century before the existence of atoms
and molecules was accepted by most scientists. In fact, the thermodynamics of the
nineteenth century was expressed in terms of the mass of a system, rather than the
number of particles it contains, which is standard today.

Because thermodynamics was developed without benefit of the insight provided
by molecular theory, its history is characterized by ingenious but rather convoluted
arguments. These arguments led eventually to a formal system of postulates based on
the concept of entropy, from which all of thermodynamics could be derived.

From the point of view of thermodynamics, everything starts with the postulates
presented later in this chapter. Even though these postulates can be traced back to
statistical mechanics, they provide a consistent starting place for a self-consistent
theory that produces complete agreement with experiments in the real world.

Thermodynamics can also be regarded as complementary to statistical mechan-
ics. It gives different insights into physical properties. In many cases, thermody-
namics is actually more efficient than statistical mechanics for deriving important
equations.

Beginning the study of thermodynamics with the formal postulates, as we do in
Part II of this book, avoids much of the complexity that nineteenth-century scientists
had to deal with. The only drawback of the formal postulates is that they are
rather abstract. A major purpose of Part I of this book was to make them less
abstract by providing an explicit example of what entropy means and how it might be
calculated.

In the following three sections we will make the connection between the statistical
mechanics of Part I and the thermodynamics of Part II more explicit by discussing
the concepts of ‘state’ and ‘state function’ in the two theories. We will then present
the postulates and laws of thermodynamics, including references to the corresponding
results from classical statistical mechanics that were obtained in Part I.



Macroscopic Equilibrium States 103

9.2 Microscopic and Macroscopic States

A microscopic state is a property of a system of particles. In classical mechanics, a
microscopic state is characterized by specific values of the positions and momenta of
every particle; that is, a point in phase space. In quantum mechanics, a microscopic
state is characterized by a unique, many-particle wave function.

In thermodynamic experiments we restrict ourselves to ‘macroscopic’ measure-
ments, which are characterized by their limited resolution; by definition, macroscopic
measurements cannot resolve individual particles or microscopic length scales. It might
be appropriate to remember that thermodynamics was developed before scientists even
believed that molecules existed—and they certainly did not measure the behavior of
individual molecules.

For both classical and quantum systems, the microscopic state is not experimen-
tally accessible to macroscopic measurements. In the experiments we wish to describe,
we can obtain some information about the microscopic state, but we cannot determine
it completely.

A macroscopic state is not a property of a thermodynamic system; it is a description
of a thermodynamic system based on macroscopic measurements. Due to the exper-
imental uncertainty of macroscopic measurements, a macroscopic state is consistent
with an infinity of microscopic states. A system can be in any microscopic state that
would be consistent with the experimental observations.

Formally, this might seem to be a rather loose definition of what we mean
by ‘macroscopic state’. In practice, however, there is rarely a problem. Because
microscopic fluctuations are so much smaller than experimental uncertainties, it is
relatively easy to specify which microscopic states are consistent with macroscopic
measurements.

9.3 Macroscopic Equilibrium States

An equilibrium state is a special kind of macroscopic state. Within the limits of
experimental measurements, the properties of a system in an equilibrium state do
not change with time, and there is no net transfer of energy or particles into or out of
the system.

Equilibrium states can usually be described by a small number of measurements
in the sense that all other properties are completely determined within experimental
error. In the case of an ideal gas, discussed in Part I, we need to know only the number
of particles, the volume, and the energy. Given those values, we can calculate the
temperature, pressure, and chemical potential, along with a number of other quantities
that we will discuss in the following chapters.

For more complicated systems we might need to know how many molecules of
each type are present, and perhaps something about the shape and surface properties
of the container. In all cases, the number of quantities needed to characterize an
equilibrium system will be tiny in comparison with the number of particles in the
system.
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9.4 State Functions

The term ‘state function’ denotes any quantity that is a function of the small number
of variables needed to specify an equilibrium state.

The main substance of the thermodynamic postulates is that for every macroscopic
system in thermal equilibrium there exists a state function called the entropy, which
has certain properties listed below. Given these postulates, the entire mathematical
structure of thermodynamics can be derived—which is the subject of the rest of the
chapters in Part II.

9.5 Properties and Descriptions

In order to understand thermodynamics it will be important to keep in mind
the distinction between a property of a system and a description of a system.
A ‘property’ is an exact characteristic of a system. If a system contains exactly
63749067496584764830091 particles, that is a property of the system. A ‘description’
is, at most, an estimate of a property. If a measurement reveals that a system has
6.374907(2) × 1023 particles, that is a description.

In Chapter 4 we calculated the average number of particles in a subsystem. That
number is an excellent description of the system for human purposes because the
relative statistical fluctuations are so small. However, it is not the true number of
particles at any instant of time. In a system of 1020 particles, the true number of
particles is a property of the system, but its exact value will fluctuate over time by
roughly 1010 particles.

Because thermodynamics deals with descriptions of macroscopic systems, rather
than their true properties, we will not belabor the distinction in Part II. All quantities
will be descriptions of a system.

9.6 Postulates of Thermodynamics

9.6.1 Postulate 1: Equilibrium States

Postulate 1: There exist equilibrium states of a macroscopic system that are charac-
terized uniquely by a small number of extensive variables.

Recall that extensive variables are quantities that provide a measure of the size of
the system. Examples include the total energy, the volume, and the number of parti-
cles. By contrast, intensive parameters are quantities that are independent of the size
of the system. Examples include temperature, pressure, and chemical potential.

The remaining postulates all specify properties of a state function called the
‘entropy’. These properties should be compared to what you know of the entropy
of an ideal gas from Part I.

9.6.2 Postulate 2: Entropy Maximization

Postulate 2: The values assumed by the extensive parameters of an isolated composite
system in the absence of an internal constraint are those that maximize the entropy
over the set of all constrained macroscopic states.
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The property of the entropy in the second postulate is by far the most important.
It has two consequences that we will use repeatedly.

First, whenever we release a constraint on a composite system, the entropy will
increase.

ΔS ≥ 0 (9.1)

This follows directly from Boltzmann’s idea that macroscopic systems go from less
probable states to more probable states. The final state must be the most probable
state and therefore have the highest entropy. This property is the Second Law of
Thermodynamics.

Eq. (9.1) can be rather puzzling. It gives time a direction, sometimes called the
‘arrow of time’. This can seem strange, since the underlying equations of motion for
the molecules, either classical or quantum, are time-reversal invariant. There is not
really a contradiction, and we will reconcile the apparent conflict in Chapter 21.

The second consequence of eq. (9.1) is that we can find the equilibrium values of
the extensive parameters describing the amount of something after a constraint has
been released by maximizing the entropy. This will provide an effective approach to
solving problems in thermodynamics.

9.6.3 Postulate 3: Additivity

Postulate 3: The entropy of a composite system is additive over the constituent
subsystems.

Since we regard the composite system as fundamental in the definition of entropy,
and the entropy of a composite system separates into the sum of the entropies of the
subsystems, this postulate could be equally well called the postulate of separability.
The term ‘additivity’ is generally preferred because of the concentration on the
properties of simple systems in the history of thermodynamics.

Most interactions between molecules are short-ranged. If we exclude gravitational
interactions and electrical interactions involving unbalanced charges, the direct inter-
action between any two molecules is essentially negligible at distances of more than a
few nanometers. As discussed at the end of Chapter 7, this leads to an approximate
separation of the integrals defining the entropy for the subsystems, so that the entropy
of the composite system is just the sum of the entropies of the subsystem.

Additivity for systems with interacting particles is an approximation in that
it neglects direct interactions between particles in different subsystems. However,
deviations from additivity are usually very small due to the extremely short
range of intermolecular interactions in comparison to the size of macroscopic
systems.

9.6.4 Postulate 4: Monotonicity

Postulate 4: The entropy is a monotonically increasing function of the energy for
equilibrium values of the energy.
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The entropy of the classical ideal gas is a monotonically increasing function of the
energy. This monotonicity is extremely important for all systems, since it implies that
the temperature is positive, as we have shown in Chapter 8.

The postulate of monotonicity is usually expressed thus: ‘The entropy is a monoton-
ically increasing function of the energy.’ Unfortunately, despite its importance, this
statement is not entriely true for some of the most important models in physics, as
we will see in Chapter 30. In practice, this blemish does not cause any inconvenience,
because we are only interested in values of the energy that are consistent with thermal
equilibrium, and it is true for those values.

9.6.5 Postulate 5: Analyticity

Postulate 5: The entropy is a continuous and differentiable function of the extensive
parameters.

The true number of particles is, of course, an integer. However, when we talk
about the ‘number of particles’ or the value of N , we really mean a description of the
number of particles that differs from the true number by less than the accuracy of our
measurements. Since N is a description of the number of particles, it is not limited to
being an integer.

Thermodynamics is much easier if we can work with functions that are continuous
and differentiable. Conveniently, this is almost always true.

However, the postulate of analyticity can break down. When it does, it usually
signals some sort of instability or phase transition, which is particularly interesting.
Stability and phase transitions are discussed in Chapters 16 and 17. We will consider
specific examples of phase transitions in Chapters 27 and 30.

9.6.6 Postulate 6: Extensivity

Postulate 6: The entropy is an extensive function of the extensive variables.

‘Extensivity’ is the property that the entropy is directly proportional to the size
of the system; if the extensive parameters are all multiplied by some number λ, the
entropy will be too.

S (λU, λV, λN) = λS (U, V,N) (9.2)

Mathematically, eq. (9.2) means that the entropy is assumed to be an homogeneous,
first-order function of the extensive variables.

The extensivity postulate is not true for all systems!
Even such a common system as a gas in a container violates this postulate, because

the molecules of the gas can be adsorbed onto the inner walls of the container. Since the
surface-to-volume ratio varies with the size of the container, the fraction of molecules
adsorbed on the inner walls also varies, and such a system is not extensive.

For most of the book we will not assume extensivity, although in Chapter 13 we
will see that extensivity can be extremely useful for investigating the properties of
materials.
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The properties of additivity and extensivity are often confused. This is probably
due to the fact that many textbooks restrict their discussion of thermodynamics to
homogeneous systems, for which both properties are true. Additivity is the more
general property. It is true whenever the range of interactions between particles is
small compared to the size of the system. Extensivity is only true to the extent that
the surface of the system and the interface with its container can be neglected.

9.7 The Laws of Thermodynamics

The ‘laws’ of thermodynamics were discovered considerably earlier than the formula-
tion of thermodynamics in terms of ‘postulates’. The peculiar numbering of the laws is
due to fixing the First and Second laws before the importance of the ‘zeroth’ law was
realized. The current numbering scheme was suggested by Ralph H. Fowler (British
physicist and astronomer, 1889–1944) as a way of acknowledging the importance of
the ‘zeroth’ law.

The laws of thermodynamics are:

Zeroth Law If two systems are each in equilibrium with a third system, they are
also in equilibrium with each other.
First Law Heat is a form of energy, and energy is conserved.
Second Law After the release of a constraint in a closed system, the entropy of the
system never decreases.
Third Law (Nernst Postulate) The entropy of any quantum mechanical system
goes to a constant as the temperature goes to zero.

The Zeroth Law was derived from statistical mechanics in Section 7.8.
The First Law is simply conservation of energy. However, at the time it was

formulated it had just been discovered that heat was a form of energy, rather than
some sort of mysterious fluid as had been previously supposed.

The Second Law is essentially the same as Postulate 2 in Subsection 9.6.2.
The Third Law is also known as the Nernst Postulate,1 adding to the confusion

between laws and postulates. It is the only law (or postulate) that cannot be under-
stood on the basis of classical statistical mechanics. For classical models, the entropy
always goes to negative infinity as the temperature goes to zero. The explanation of
the Third Law is intrinsically quantum mechanical. Its consequences will be discussed
in Chapter 18, but it will not be derived until Chapter 22 in Part IV.

In quantum statistical mechanics there is a universally recognized convention for
the absolute value of the entropy that will be discussed in Part IV. This convention
implies that

1Named after the German scientist Walther Hermann Nernst (1864–1941), who in 1920 won the Nobel
Prize for its discovery.
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lim
T→0

S(T ) ≥ 0. (9.3)

Since the real world obeys the laws of quantum mechanics, the entropy of real systems
obey eq. (9.3).

The Nernst Postulate is often stated as limT→0 S(T ) = 0, but that is incorrect.
There are many examples of systems with disordered ground states that have non-
zero entropy at zero temperature.
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Perturbations of Thermodynamic
State Functions

When you come to a fork in the road, take it.
Yogi Berra

As discussed in the previous chapter, state functions specify quantities that depend
only on the small number of variables needed to characterize an equilibrium state. It
turns out that state functions are strongly restricted by the postulates of thermody-
namics, so that we can derive a great many non-trivial equations linking observable
quantities. The power of thermodynamics is that these relations are true for all
systems, regardless of their composition!

In Part I we used the symbol E to denote the energy of a system, which is customary
in statistical mechanics. Unfortunately, it is customary in thermodynamics to use
the symbol U for the energy. The reason for this deplorable state of affairs is that
it is often convenient in thermodynamics to consider the energy per particle (or
per mole), which is denoted by changing to lower case, u ≡ U/N . Since e might
be confused with Euler’s number, u and U have become standard. We will follow
thermodynamics convention in Part II and denote the energy by U . It is fortunate
that students of thermal physics are resilient, and can cope with changing notation.

10.1 Small Changes in State Functions

In much of thermodynamics we are concerned with the consequences of small changes.
Part of the reason is that large changes can often be calculated by summing or
integrating the effects of many small changes, but in many cases the experimental
questions of interest really do involve small changes.

Mathematically, we will approximate small changes by infinitesimal quantities.
This, in turn, leads us to consider two distinct types of infinitesimals, depending on
whether or not there exists a function that can be determined uniquely by integrating
the infinitesimal.
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10.2 Conservation of Energy

The great discovery by James Prescott Joule (1818–1889) that heat is another form of
energy, combined with the principle that energy is conserved, gives us the First Law
of Thermodynamics.

We will usually apply the First Law to small changes in thermodynamic quantities,
so that it can be written as

dU = −dQ + −dW (10.1)

if the number of particles in the system does not change. Although dU , −dQ, and −dW
are all infinitesimal quantities, there is an important distinction between those written
with d and those written with −d that is discussed in the next section.

The change in the energy of a system during some thermal process is denoted by
dU , and is positive when energy is added to the system. The energy added to the
system in the form of heat is denoted by −dQ, and the work done on the system is
denoted by −dW . The sign convention is that all three of these differentials are positive
when energy is added to the system.

Our choice of sign convention for −dW is by no means universal. Taking an informal
survey of textbooks, I have found that about half use our convention, while the
other half take −dW to be positive when work is done by the system. Be careful
when comparing our equations with those in other books.

In many applications of thermodynamics we will have to consider transfers of
energy between two or more systems. In that case, the choice of what the positive
directions for −dQ and −dW will be indicated by arrows in a diagram.

10.3 Mathematical Digression on Exact and Inexact Differentials

Consider an infinitesimal quantity defined by the equation

dF = f(x)dx (10.2)

where f(x) is some known function. We can always—at least in principle—integrate
this equation to obtain a function F (x) that is unique to within an additive constant.

Now consider the infinitesimal defined by the equation

−dF = f(x, y)dx + g(x, y)dy (10.3)

where f(x, y) and g(x, y) are known functions. Although the differential −dF can be
integrated along any given path, the result might depend on the specific path, and
not just on the initial and final points. In that case, no unique function F (x, y) can
be found by integrating eq. (10.3), and −dF is called an ‘inexact’ differential. The use
of −d instead of d indicates that an infinitesimal is an inexact differential.
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Note that if two path integrals produce different values, the integral over the closed
path going from the initial to the final point along one path and returning along the
other will not vanish. Therefore, the failure of an integral around an arbitrary closed
path to vanish is also characteristic of an inexact differential.

As an example, take the following inexact differential.

−dF = x dx + x dy (10.4)

Consider the integral of this differential from (0, 0) to the point (1, 1) by two distinct
paths.

Path A: From (0, 0) to (x, 0) to (x, y)
Path B: From (0, 0) to (0, y) to (x, y)

The path integral for Path A gives∫ x

0

x′ dx′
∣∣∣∣
y′=0

+
∫ y

0

x′ dy′
∣∣∣∣
x′=x

=
1
2
x2 + xy (10.5)

and the path integral for Path B gives∫ y

0

x′ dy′
∣∣∣∣
x′=0

+
∫ x

0

x′ dx′
∣∣∣∣
y′=y

= 0 +
1
2
x2 =

1
2
x2 (10.6)

Since the two path integrals in eqs. (10.5) and (10.6) give different results for
y �= 0, there is no unique function F (x, y) corresponding to the inexact differential in
eq. (10.4).

10.3.1 Condition for a Differential to be Exact

We can easily determine whether a differential is exact or inexact without the necessity
of performing integrals over all possible paths. If a function F (x, y) exists, we can write
its differential in terms of partial derivatives.

dF =
(

∂F

∂x

)
dx +

(
∂F

∂y

)
dy (10.7)

If the differential

dF = f(x, y)dx + g(x, y)dy (10.8)

is exact, we can identify f(x, y) and g(x, y) with the corresponding partial derivatives
of F (x, y).

f(x, y) =
∂F

∂x
(10.9)

g(x, y) =
∂F

∂y
(10.10)
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By looking at partial derivatives of f(x, y) and g(x, y), we find that they must satisfy
the following condition.

∂f

∂y
=

∂2F

∂y∂x
=

∂2F

∂x∂y
=

∂g

∂x
(10.11)

The central equality follows from the fact that the order of partial derivatives can be
switched without changing the result for well-behaved functions, which are the only
kind we allow in physics textbooks.

10.3.2 Integrating Factors

There is a very interesting and important relationship between exact and inexact
differentials. Given an inexact differential,

−dF = f(x, y)dx + g(x, y)dy (10.12)

we can find a corresponding exact differential of the form

dG = r(x, y) −dF (10.13)

for a function r(x, y), which is called an ‘integrating factor’. The function r(x, y) is
not unique; different choices for r(x, y) lead to different exact differentials that are all
related to the same inexact differential.

The example given in eq. (10.4) is too easy. The function r(x, y) = 1/x is obviously
an integrating factor corresponding to dG = dx + dy.

A less trivial example is given by the inexact differential

−dF = y dx + dy (10.14)

To find an integrating factor for eq. (10.14), first write the formal expression for
the exact differential.

dG = r(x, y)−dF = r(x, y)y dx + r(x, y)dy (10.15)

The condition that dG is an exact differential in eq. (10.11) gives

∂

∂y
[r(x, y)y] =

∂

∂x
r(x, y) (10.16)

or

r + y
∂r

∂y
=

∂r

∂x
(10.17)

Eq. (10.17) has many solutions, so let us restrict our search for an integrating
factor to functions that only depend on x.

r(x, y) = r(x) (10.18)
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Eq. (10.17) then simplifies because the partial derivative with respect to y vanishes.

r =
dr

dx
(10.19)

Eq. (10.19) can be easily solved.

r(x, y) = r(x) = exp(x) (10.20)

The final result for dG is

dG = exp(x)−dF = y exp(x) dx + exp(x)dy (10.21)

Naturally, any constant multiple of exp(x) is also an integrating factor.

10.4 Conservation of Energy Revisited

Since the energy U is a state function, the differential of the energy, dU , must be an
exact differential. On the other hand, neither heat nor work is a state function, so
both −dQ and −dW are inexact.

10.4.1 Work

For simplicity, first consider an infinitesimal amount of work done by using a piston to
compress the gas in some container. Let the cross-sectional area of the piston be A, and
let it move a distance dx, where positive dx corresponds to an increase in the volume,
dV = Adx. The force on the piston due to the pressure P of the gas is F = PA, so
that the work done on the gas is −Fdx or

−dW = −Fdx = −P dV (10.22)

The volume of the system is obviously a state function, so the differential dV is
exact. Eq. (10.22) shows a relationship between an inexact and an exact differential,
with the function 1/P playing the role of an integrating factor. To see that −dW is
indeed an inexact differential, integrate it around any closed path in the P, V -plane.
The result will not vanish.

10.4.2 Heat

The heat transferred to a system turns out to be closely related to the change in
entropy of the system. Consider the change in entropy due to adding a small amount
of heat −dQ to the system.

dS = S(E + −dQ, V,N) − S(E, V,N) =
(

∂S

∂E

)
V,N

−dQ =
−dQ

T
(10.23)
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Again we see an equation relating exact and inexact differentials. In this case, the
function 1/T is the integrating factor.

Eq. (10.23) is extremely important for a number of reasons. It can be used to
numerically integrate experimental data to calculate changes in entropy. It is also
important for our purposes when written slightly differently.

−dQ = T dS (10.24)

10.5 An Equation to Remember

Eqs. (10.22) and (10.24) can be used to rewrite eq. (10.1) in a very useful form.

dU = TdS − PdV (10.25)

This equation is, of course, only valid when there are no leaks in the system, so that
the total number of particles is held constant.

Curiously enough, in Section 8.9 on the fundamental relation in the entropy
representation, we have already derived the generalization of eq. (10.25) to include
a change dN in the number of particles. Rewriting eq. (8.34) with dU instead of dE,
we have

dS =
(

1
T

)
dU +

(
P

T

)
dV −

( μ

T

)
dN (10.26)

Solving this equation for dU , we find one of the most useful equations in thermody-
namics.

dU = TdS − PdV + μdN (10.27)

The reason that the differential form of the fundamental relation is equivalent to the
First Law of Thermodynamics (energy conservation) is that energy conservation was
used in its derivation in Part I.

Eq. (10.27) provides another interpretation of the chemical potential μ. It is the
change in the energy of a system when a particle is added without changing either
the entropy or the volume. The difficulty with this explanation of the meaning of μ
is that it is far from obvious how to ‘add a particle without changing the entropy’.
Apologies.

If there is one equation in thermodynamics that you must memorize, it is eq. (10.27).
In the following chapters you will see why this is so.
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10.6 Problems

Problem 10.1

Integrating factors for inexact differentials

We showed that the inexact differential

−dF = y dx + dy

is related to an exact differential by an integrating function

r(x, y) = rx(x)

Show that −dF is also related to another (different) exact differential by an inte-
grating function of the form

r(x, y) = ry(y)

Derive an explicit expression for ry(y), show that the new differential is exact, and
calculate the difference in the value of the corresponding function between the points
(0, 0) and (1, 1) by two different paths, as we did in class.
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Thermodynamic Processes

I never failed once. It just happened to be a 2,000-step process.
Thomas Alva Edison

In this chapter we will discuss thermodynamic processes, which concern the conse-
quences of thermodynamics for things that happen in the real world.

The original impetus for thermodynamics, aside from intellectual curiosity, was
the desire to understand how steam engines worked so that they could be made more
efficient. Later, refrigerators, air conditioners, and heat pumps were developed and
were found to be governed by exactly the same principles as steam engines.

11.1 Irreversible, Reversible, and Quasi-Static Processes

If we release a constraint in a composite system, the new equilibrium state maximizes
the total entropy so that the change in entropy is non-negative for all processes in an
isolated system.

dS ≥ 0 (11.1)

The change in the total entropy is zero only when the system had already been in
equilibrium.

When the total entropy increases during some isolated thermodynamic process,
the process is described as ‘irreversible’. Running the process backwards is impossible,
since the total entropy in an isolated system can never decrease. All real processes are
accompanied by an increase in the total entropy, and are irreversible.

On the other hand, if the change ΔX in some variable X is small, the change in
entropy can also be small. Since the dependence of the entropy on a small change in
conditions is quadratic near its maximum, the magnitude of the increase in entropy
goes to zero quadratically, as (ΔX)2, while the number of changes grows linearly,
as 1/ΔX. The sum of the small changes will be proportional to (ΔX)2/ΔX = ΔX,
which goes to zero as ΔX goes to zero. Consequently, a series of very small changes
will result in a small change of entropy for the total process. In the limit of infinitesimal
steps, the increase of entropy can vanish. Such a series of infinitesimal steps is called
a quasi-static process.
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A quasi-static process is reversible. Since there is no increase in entropy, it could
be run backwards and return to the initial state.

The concept of a quasi-static process is an idealization, but a very useful one. The
first applications of thermodynamics in the nineteenth century concerned the design of
steam engines. The gases used in driving steam engines relax very quickly because of
the high speeds of the molecules, which can be of the order of 1000m/s. Even though
the approximation is not perfect, calculations for quasi-static processes can give us
considerable insight into the way real engines work.

Quasi-static processes are not merely slow. They must also take a system between
two equilibrium states that differ infinitesimally. The classic example of a slow
process that is not quasi-static occurs in a composite system with two subsystems
at different temperatures, separated by a wall that provides good but not perfect
insulation. Equilibration of the system can be made arbitrarily slow, but the total
entropy will still increase. Such a process is not regarded as quasi-static.

Although the word ‘dynamics’ appears in the word ‘thermodynamics’, the theory is
primarily concerned with transitions between equilibrium states. It must be confessed
that part of the reason for this emphasis is that it is easier. Non-equilibrium properties
are much more difficult to analyze, and we will only do so explicitly in Chapter 21,
when we discuss irreversibility.

11.2 Heat Engines

As mentioned above, the most important impetus to the development of thermo-
dynamics in the nineteenth century was the desire to make efficient steam engines.
Beginning with the work of Sadi Carnot (French scientist, 1792–1832), scientists
worked on the analysis of machines to turn thermal energy into mechanical energy
for industrial purposes. Such machines are generally known as heat engines.

An important step in the analysis of heat engines is the conceptual separation
of the engine itself from the source of heat energy. For this reason, a heat engine is
defined to be ‘cyclic’; whatever it does, it will return to its exact original state after
going through a cycle. This definition ensures that there is no fuel hidden inside the
heat engine—a condition that has been known to be violated by hopeful inventors of
perpetual-motion machines. The only thing a heat engine does is to change energy
from one form (heat) to another (mechanical work).

11.2.1 Consequences of the First Law

The simplest kind of heat engine that we might imagine would be one that takes a
certain amount of heat −dQ and turns it directly into work −dW . Since we are interested
in efficiency, we might ask how much work can be obtained from a given amount of
heat. The First Law of Thermodynamics (conservation of energy) immediately gives
us a strict limit.
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−dW ≤ −dQ (11.2)

A heat engine that violated eq. (11.2) could be made into a perpetual-motion
machine; the excess energy (−dW − −dQ) could be used to run the factory, while the rest
of the work would be turned into heat and fed back into the heat engine. Because such
a heat engine would violate the First Law of Thermodynamics, it would be called a
Perpetual Motion Machine of the First Kind.

Perpetual Motion Machines of the First Kind do not exist.

A pessimist might express this result as: ‘You can’t win.’ Sometimes life seems like
that.

11.2.2 Consequences of the Second Law

The limitations due to the Second Law are considerably more severe than those due
to the First Law.

If a positive amount of energy in the form of heat −dQ is transferred to a heat engine,
the entropy of the heat engine increases by dS = −dQ/T > 0. If the heat engine now
does an amount of work −dW = −dQ, the First Law (conservation of energy) is satisfied.
However, the entropy of the heat engine is still higher than it was at the beginning
of the cycle by an amount −dQ/T > 0. The only way to remove this excess entropy so
that the heat engine could return to its initial state would be to transfer heat out of
the system, but this would cost energy, lowering the amount of energy available for
work.

A machine that could transform heat directly into work, −dW = −dQ, could run
forever, taking energy from the heat in its surroundings. It would be called a Perpetual
Motion Machine of the Second Kind because it would violate the second law of
thermodynamics.

Perpetual Motion Machines of the Second Kind do not exist.

A pessimist might express this result as: ‘You can’t break even.’ Sometimes life
seems like that, too.

It is unfortunate that perpetual-motion machines of the second kind do not exist,
since they would be very nearly as valuable as perpetual-motion machines of the first
kind. Using one to power a ship would allow you to cross the ocean without the need
of fuel, leaving ice cubes in your wake.

11.3 Maximum Efficiency

The limits on efficiency imposed by the First and Second laws of thermodynamics
lead naturally to the question of what the maximum efficiency of a heat engine might
be. The main thing to note is that after transferring heat into a heat engine, heat
must also be transferred out again before the end of the cycle to bring the net entropy
change back to zero. The trick is to bring heat in at a high temperature and take it
out at a low temperature.
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We do not need to be specific about the process, but we will assume that it is
quasi-static (reversible). Simply require that heat is transferred into the heat engine
from a reservoir at a high temperature TH , and heat is removed at a low temperature
TL < TH . If the net work done by the heat engine during an infinitesimal cycle is −dW ,
conservation of energy gives us a relationship between the work done and the heat
exchanged.

−dW = −dQH + −dQL (11.3)

Sign conventions can be a tricky when there is more than one system involved. Here
we have at least three systems: the heat engine and the two reservoirs. In eq. (11.3),
work done by the heat engine is positive, and both −dQH and both −dQL are positive
when heat is transferred to the heat engine. In practice, the high-temperature reservoir
is the source of energy, so −dQH > 0, while wasted heat energy is transferred to the
low-temperature reservoir, so −dQL < 0.

Because a heat engine is defined to be cyclic, the total entropy change for a
completed cycle must be zero.

dS =
−dQH

TH
+

−dQL

TL
= 0 (11.4)

The assumption of a quasi-static process (reversibility) is essential to eq. (11.4). While
dS = 0 in any case because of the cyclic nature of the heat engine, a violation of
reversibility would mean that a third (positive) term must be added to (−dQH/TH +
−dQL/TL) to account for the additional generation of entropy.

If we use eq. (11.4) to eliminate −dQL from eq. (11.3), we obtain a relationship
between the heat in and the work done.

−dW =
(

1 − TL

TH

)
−dQH (11.5)

We can now define the efficiency of a heat engine, η.

η =
−dW
−dQH

= 1 − TL

TH
=

TH − TL

TH
(11.6)

The efficiency η is clearly less than 1, which is consistent with the limitation due to
the Second Law of Thermodynamics. Actually, the Second Law demands that the
efficiency given in eq. (11.6) is the maximum possible thermal efficiency of any heat
engine, whether it is reversible (as assumed) or irreversible. The proof of this last
statement will be left as an exercise.

11.4 Refrigerators and Air Conditioners

Since ideal heat engines are reversible, you can run them backwards to either cool
something (refrigerator or air conditioner) or heat something (heat pump). The
equations derived in the previous section do not change.
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First consider a refrigerator. The inside of the refrigerator can be represented by the
low-temperature reservoir; the goal is to remove as much heat as possible for a given
amount of work. The heat removed from the low-temperature reservoir is positive for
a refrigerator, −dQL > 0, and the work done by the heat engine is negative, −dW < 0,
because you have to use power to run the refrigerator.

We can define a coefficient of performance εR and calculate it from eqs. (11.3) and
(11.4).

εR =
−dQL

−−dW
=

TL

TH − TL
(11.7)

This quantity can be much larger than 1, which means that you can remove a great
deal of heat from the inside of your refrigerator with relatively little work; that is, you
will need relatively little electricity to run the motor.

An air conditioner works the same way as a refrigerator, but −dQL is the heat
removed from inside your house or apartment. The coefficient of performance is again
given by eq. (11.7).

The coefficient of performance for a refrigerator or an air conditioner is clearly
useful when you are thinking of buying one. Indeed, it is now mandatory for new
refrigerators and air conditioners to carry labels stating their efficiency. However,
the labels do not carry the dimensionless quantity εR; they carry an ‘Energy
Efficiency Ratio’ (EER) which is the same ratio, but using British Thermal Units
(BTU) for −dQL and Joules for −dW . The result is that the EER is equal to εR times
a factor of about 3.42BTU/J . A cynic might think that these peculiar units are
used to produce larger numbers and improve sales—especially since the units are
sometimes not included on the label; I couldn’t possibly comment.

11.5 Heat Pumps

Heat pumps also work the same way as refrigerators and air conditioners, but with
a different purpose. They take heat from outside your house and use it to heat the
inside of your house. The low-temperature reservoir outside your house usually takes
the form of pipes buried outside in the yard. The goal is to heat the inside of your
house as much as possible with a given amount of work.

We can define a coefficient of performance for a heat pump.

εHP =
−−dQH

−−dW
=

TH

TH − TL
(11.8)

This quantity can also be significantly larger than 1, which makes it preferable to use
a heat pump rather than running the electricity through a resistive heater.



Problems 121

11.6 The Carnot Cycle

The Carnot cycle is a specific model of how a heat engine might work quasistatically
between high- and low-temperature thermal reservoirs. The Carnot heat engine is
conceived as a closed piston containing gas. The piston is brought into contact with the
high-temperature reservoir, and the gas expands, doing work, ΔWH > 0. The piston
is then removed from contact with the thermal reservoir. It now expands adiabatically,
doing more work, ΔWA > 0. While it expands adiabatically, the temperature of the
gas drops. When the temperature reaches that of the low-temperature reservoir, it is
brought into contact with the low-temperature reservoir and isothermally compressed,
which requires work, ΔWL < 0. This continues until it is removed from the low-
temperature reservoir, when it continues to be compressed adiabatically, requiring
more work ΔW ′

A < 0. The point at which the adiabatic compression begins is chosen
carefully, so that when the temperature of the gas reaches that of the high-temperature
reservoir it is at exactly the same volume as when the cycle began. This completes the
Carnot cycle.

The derivation of the efficiency of the Carnot cycle is a staple of thermodynamics
books, but I think that it is more fun (and more useful) to do it yourself. The answer
is, of course, the same as we found with less effort in eq. (11.6).

11.7 Problems

Problem 11.1

Efficiency of real heat engines

We showed that the efficiency of an ideal heat engine is given by

ηideal =
TH − TL

TH
= 1 − TL

TH

Real heat-engines must be run at non-zero speeds, so they cannot be exactly quasi-
static. Prove that the efficiency of a real heat engine is less than that of an ideal heat
engine.

η < ηideal

Problem 11.2

Maximum work from temperature differences

Suppose we have two buckets of water with constant heat capacities CA and CB , so
that the relationship between the change in temperature of bucket A and the change
in energy is

dUA = CAdT
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with a similar equation for bucket B.
The buckets are initially at temperatures TA,0 and TB,0.
The buckets are used in conjunction with an ideal heat engine, guaranteed not to

increase the world’s total entropy (FBN Industries, patent applied for).

1. What is the final temperature of the water in the two buckets?
2. What is the maximum amount of work that you can derive from the heat energy

in the buckets of water?
3. If you just mixed the two buckets of water together instead of using the heat

engine, what would be the final temperature of the water?
4. Is the final temperature in this case higher, lower, or the same as when the heat

engine is used? Explain your answer.
5. What is the change in entropy when the water in the two buckets is simply mixed

together?

Problem 11.3

Work from finite heat reservoirs

1. Suppose we have N objects at various initial temperatures. The objects have
constant but different heat capacities {Cj |j = 1, . . . , N}. The objects are at initial
temperatures {Tj,0|j = 1, . . . , N}.

If we again have access to an ideal heat-engine, what is the maximum work
we can extract from the thermal energy in these objects?

What is the final temperature of the objects?
2. Suppose that the heat capacities of the objects were not constant, but propor-

tional to the cube of the absolute temperature.{
Cj(T ) = AjT

3|j = 1, . . . , N
}

where the Aj are constants.
What is the maximum work we can extract from the thermal energy in these

objects?
What is the final temperature of the objects?
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Thermodynamic Potentials

Nobody knows why, but the only theories which work are the mathematical
ones.

Michael Holt, in Mathematics in Art

Although the fundamental relation in either the entropy, S = S(U, V,N), or energy,
U = U(S, V,N), representations contains all thermodynamic information about the
system of interest, it is not always easy to use that information for practical calcula-
tions.

For example, many experiments are done at constant temperature, with the
system in contact with a thermal reservoir. It would be very convenient to have
the fundamental relation expressed in terms of the intensive parameters T and P ,
instead of the extensive parameters S and V . It turns out that this can be done, but
it requires us to introduce new functions that are generally known as thermodynamic
potentials. The mathematics required involves Legendre transforms (named after the
French mathematician Adrien-Marie Legendre (1752–1833)), which will be developed
in the next section. The rest of the chapter is devoted to investigating the properties
and advantages of various thermodynamic potentials.

12.1 Mathematical digression: the Legendre Transform

Before we go through the details of the Legendre transform, it might be useful to
discuss why we need it and what problems it solves.

12.1.1 The Problem of Loss of Information

The basic structure of representing the fundamental relation in terms of T , P , or μ,
instead of U , V , or N , is that we want to use the derivative of a function as the
independent variable. For simplicity, consider some function

y = y(x) (12.1)

and its derivative

p =
dy

dx
= p(x) (12.2)
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y

x

Fig. 12.1 Illustration of distinct functions y = y(x) that have the same slope at a given value

of y.

We could, of course, invert eq. (12.2) to find x = x(p), and then find y = y(x(p)) =
y(p). Unfortunately, this procedure results in a loss of information. The reason is
illustrated in Fig. 12.1, which shows that all functions of the form y(x − xo) give
exactly the same function y(p). If we only have y(p), we have lost all information
about the value of xo.

12.1.2 Point Representations and Line Representation

To solve the problem of lost information, we can turn to an alternative representation
of functions.

When we write y = y(x), we are using a ‘point’ representation of the function; for
each value of x, y(x) specifies a value of y, and the two together specify a point in the
x, y-plane. The set of all such points specifies the function.

However, we could also specify a function by drawing tangent lines at points along
the curve, as illustrated in Fig. 12.2. The envelope of the tangent lines also reveals the
function. This is known as a ‘line’ representation of a function.

12.1.3 Direct Legendre Transforms

The idea of a Legendre transform is to calculate the equations of the tangent lines
that carry the full information about the function. The information we need for each
tangent line is clearly the slope, which we want to be our new variable, and the y-
intercept.

Consider a function, y = y(x), which is plotted as a curve in Fig. 12.3. We can
construct a straight-line tangent to any point (x, y) along the curve, which is also
shown in Fig. 12.3. If the y-intercept is located at (0, q), we can calculate the slope of
the tangent line.

p =
dy

dx
=

y − q

x − 0
= p(x) (12.3)
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y

x

Fig. 12.2 Illustration of how to represent a function by the envelope of tangent lines.

y

x

x,y

0,q

Fig. 12.3 Graphical representation of a general Legendre transform. The straight line is tangent

to the curve y = y(x). The y-intercept of the tangent line is located at (0, q).

Assuming that p = p(x) is monotonic, we can invert it to obtain x = x(p). We can
then eliminate x in favor of p in eq. (12.3) and solve for q = q(p).

q = y − px = q(p) ≡ y[p] (12.4)

The square brackets in y[p] indicate that y[p] = y − px is the Legendre transform of
y(x), with p as the new independent variable.
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Table 12.1 General form of a Legendre transform.

Direct transform Inverse transform

y = y(x) q = q(p)
dy = p dx dq = −x dp

p =
dy

dx
−x =

dq

dp
q = y − px y = q + xp
q = q(p) = y[p] y = y(x)

dq = −x dp dy = p dx

The Legendre transform and its inverse are summarized in Table 12.1.

12.1.4 Inverse Transformations

The inverse Legendre transformation proceeds in the same way. In this case,

x = −dq

dp
= x(p) (12.5)

Assuming that x = x(p) is monotonic, we can invert it to obtain p = p(x). Eq. (12.4)
can be solved for y.

y = q − (−x)p = q + xp (12.6)

We can then eliminate p in favor of x in eq. (12.3) and solve for y = y(x). There is no
loss of information in either the direct or inverse Legendre transform.

12.1.5 Legendre Transform of Infinitesimals

It will be very useful to write the information in eqs. (12.3) and (12.5) using infinites-
imals.

dy = p dx (12.7)

dq = −x dp (12.8)

Note that going between the original infinitesimal and the Legendre transform merely
involves switching x and p and changing the sign. This simple observation will make
life much easier when working with the thermodynamic potentials discussed in the
rest of this chapter—assuming that you have memorized eq. (10.27).

12.2 Helmholtz Free Energy

Many experiments are carried out at constant temperature, and we have thermometers
to measure the temperature. However, we do not have an easy way of measuring
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entropy, so it would be very useful to express the fundamental relation, which contains
all thermodynamic information about a system, in terms of the temperature.

We begin with the fundamental relation in the energy representation, U =
U(S, V,N). We wish to replace the entropy S with the temperature T as the indepen-
dent variable.

T =
(

∂U

∂S

)
V,N

(12.9)

We follow exactly the same procedure as in Section 12.1, except that we use partial
derivatives and hold V and N constant. The Legendre transform of the energy with
respect to temperature is called the Helmholtz free energy, and is denoted by the
symbol F in this book, although you will also see it called A in some other texts.

F (T, V,N) ≡ U [T ] = U − TS (12.10)

Since you have memorized the differential form of the fundamental relation in the
energy representation, eq. (10.27),

dU = TdS − PdV + μdN (12.11)

you can easily find the differential form of the fundamental relation in the Helmholtz
free energy representation by exchanging S and T in the first term and reversing the
sign.

dF = −SdT − PdV + μdN (12.12)

From eq. (12.12) we can easily read off the partial derivative of F with respect to the
new independent variable T .

S = −
(

∂F

∂T

)
V,N

(12.13)

The other partial derivatives look much the same as before, but it is important to
keep track of what is being held constant. For example, in the energy representation,
the pressure is found from the partial derivative

P = −
(

∂U

∂V

)
S,N

(12.14)

where the entropy is held constant. In the Helmholtz free energy representation, the
pressure is found from a similar partial derivative

P = −
(

∂F

∂V

)
T,N

(12.15)

but now the temperature is held constant.
The Legendre transforms, direct and inverse, for the Helmholtz free energy are

summarized in Table 12.2.
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Table 12.2 Helmholtz free energy.

Direct transform Inverse transform

U = U(S, V,N) F = F (T, V,N)
dU = TdS − PdV + μdN dF = −SdT − PdV + μdN

T =
(

∂U

∂S

)
V,N

−S =
(

∂F

∂T

)
V,N

F = U − TS U = F + TS
F = F (T, V,N) = U [T ] U = U(S, V,N)

dF = −SdT − PdV + μdN dU = TdS − PdV + μdN

12.3 Enthalpy

The Legendre transform of the energy with respect to pressure is called the enthalpy,
and is denoted by the symbol H = U [P ]. It is often convenient because it takes the
pressure as one of the independent variables. It is very widely used in chemistry for
that reason, since most chemical experiments are carried out at atmospheric pressure.

We again begin with the fundamental relation in the energy representation,
U = U(S, V,N). This time we will replace the volume V with the pressure P as the
independent variable.

P = −
(

∂U

∂V

)
S,N

(12.16)

To find the enthalpy we follow exactly the same procedure as in the previous
section.

H(S, P,N) ≡ U [P ] = U + PV (12.17)

The differential form for the enthalpy is found from the differential form of the
fundamental relation in the energy representation, eq. (12.11), but we now exchange
V and P and change the sign of that term.

dH = TdS + V dP + μdN (12.18)

From eq. (12.18) we can read off the partial derivative of H with respect to the new
independent variable T .

V =
(

∂H

∂P

)
S,N

(12.19)

The Legendre transforms, direct and inverse, for the enthalpy are summarized in
Table 12.3.

In some chemistry texts, the enthalpy is also referred to as the ‘heat content’,
even though −dQ is not an exact differential, and we cannot properly speak of the
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Table 12.3 Enthalpy.

Direct transform Inverse transform

U = U(S, V,N) H = H(S, P,N)
dU = TdS − PdV + μdN dH = TdS + V dP + μdN

P = −
(

∂U

∂V

)
S,N

V =
(

∂H

∂P

)
S,N

H = U + PV U = H − PV
H = H(S, V,N) = U [P ] U = U(S, V,N)

dH = TdS + V dP + μdN dU = TdS − PdV + μdN

amount of ‘heat’ in a system. The reason for this usage can be seen by referring to
eq. (12.18). Most chemical experiments are carried out under conditions of constant
pressure, with a fixed number of particles. If we recall the relationship between heat
transfer and entropy change in eq. (10.24), we find that the change in enthalpy is equal
to the heat transferred into the system under these conditions.

dH = TdS + V dP + μdN (12.20)

= TdS + 0 + 0

= −dQ

This equation is a bit peculiar in that it sets an exact differential equal to an inexact
differential. This came about by specifying the path of integration with the conditions
dP = 0 and dN = 0, which made the path one-dimensional. Since one-dimensional
differentials are always exact, −dQ = dH along the specified path.

12.4 Gibbs Free Energy

The Gibbs free energy is the Legendre transform of the energy with respect to both the
temperature and the pressure. It is denoted with the letter G, which seems remarkably
logical after seeing the standard choices for the Helmholtz free energy (F or A) and
the enthalpy (H). There are three ways to calculate it:

1. Find the Legendre transform of the Helmholtz free energy with respect to
pressure.

2. Find the Legendre transform of the enthalpy with respect to temperature.
3. Start with the energy and carry out both Legendre transforms at the same time.

Since the first two possibilities should be self evident, I will just give the third option
in the form of Table 12.4.
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Table 12.4 Gibbs free energy.

Direct transform Inverse transform

U = U(S, V,N) G = G(T, P,N)
dU = TdS − PdV + μdN dG = −SdT + V dP + μdN

T =
(

∂U

∂S

)
V,N

−S =
(

∂G

∂T

)
P,N

P = −
(

∂U

∂V

)
S,N

V =
(

∂G

∂P

)
T,N

G = U − TS + PV U = G + TS − PV
G = G(T, P,N) = U [T, P ] U = U(S, V,N)

dG = −SdT + V dP + μdN dU = TdS − PdV + μdN

12.5 Other Thermodynamic Potentials

Since there are three thermodynamic variables for even the simplest system (U , V ,
and N), and we can construct a Legendre transform from any combination of the
corresponding partial derivatives, there are 23 = 8 different thermodynamic potentials.
Each of these potentials provides a representation of the fundamental relation. They
can all be derived by the same procedures that we used for F , H, and G.

12.6 Massieu Functions

In addition to those discussed above, there is another class of thermodynamic
potentials, known as Massieu functions, which are generated from the fundamental
relation in the entropy representation, S = S(U, V,N). The differential form for the
fundamental relation in the entropy representation was found in eq. (10.26).

dS =
(

1
T

)
dU +

(
P

T

)
dV −

( μ

T

)
dN (12.21)

As can be seen from eq. (12.21), the natural variables for a Legendre transform are
1/T , P/T , and μ/T . Although these variables appear rather strange, working with
them is essentially the same as for the more usual thermodynamic potentials.

It might be easier to think about them with a change of notation. For example, we
might make β = 1/kBT the independent variable in the transformed potential, S[β].

12.7 Summary of Legendre Transforms

The usefulness of Legendre transforms and thermodynamic potentials is not limited to
providing alternative representations of the fundamental relation, although that is very
important. We will see in Chapter 14 that they also play a crucial role in deriving ther-
modynamic identities; that is, equations relating measurable quantities that are true
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for all thermodynamic systems. In Chapter 15 we will see that thermodynamic poten-
tials can be used to determine equilibrium conditions from extremum principles similar
to the maximization principle for the entropy. Finally, in Chapter 16 we will find that
they are essential to deriving stability criteria that are also valid for all systems.

12.8 Problems

Problem 12.1

Legendre transform of the energy with respect to temperature for the
classical ideal gas

Starting with the fundamental equation in the entropy representation (that is, the
entropy of the classical ideal gas—which you have memorized):

S = S(U, V,N) = kBN

(
3
2

ln
(

U

N

)
+ ln
(

V

N

)
+ lnX

)

1. Derive the fundamental relation in the energy representation (U = U(S, V,N)).
2. Derive the temperature as a function of entropy, volume, and number of particles

(one of the three equations of state).
3. Find the entropy as a function of temperature, volume and number of particles.

Is this an equation of state or a fundamental relation?
4. Derive the Helmholtz free energy of the classical ideal gas, F (T, V,N) =

U − TS.

Problem 12.2

More Legendre transforms

1. Starting with the fundamental equation in the Helmholtz free energy representa-
tion (F = F (T, V,N)) that you derived for the previous assignment, derive the
fundamental relation in the Gibbs free energy representation (G = G(T, P,N)).

2. Find the volume of the ideal gas as a function of temperature, pressure, and
number of particles by taking a derivative of the Gibbs free energy.

Problem 12.3

General thermodynamic function

Suppose we know some terms in a series expansion of the Gibbs free energy as a
function of T and P for some region near the point (T0, P0).

G = AT + BT 2 + CP + DP 2 + ETP

where A,B,C,D, and E are constants.
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1. Find the volume of the system as a function of T and P .
2. The isothermal compressibility is defined as

κT = − 1
V

(
∂V

∂P

)
T,N

Find κT for this system.
3. Find the entropy as a function of T and P for this system.

Problem 12.4

Enthalpy

The enthalpy of a material in a certain range of temperature and pressure is well
approximated by the expression:

H = A + BT + CP + DT 2 + EP 2 + FTP

1. Is this expression for H an approximation to the fundamental relation, or is it
an equation of state. Explain your answer for credit.

2. Calculate the specific heat at constant pressure, cP , within the approximation
for H given above.
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The Consequences of Extensivity

Real knowledge is to know the extent of one’s ignorance.
Confucius

In this chapter we return to the thermodynamic postulates and consider the conse-
quences of extensivity. As defined in Section 9.6.6, the entropy is extensive if

S (λU, λV, λN) = λS (U, V,N) (13.1)

for any positive value of the parameter λ. The postulate of extensivity means that S,
U , V , and N are all proportional to the size of the system.

It is common for books on thermodynamics to assume from the beginning that all
systems are homogeneous. If a system is homogeneous, then additivity automatically
implies extensivity. As noted in Subsection 9.6.6, because of this, the properties of
additivity and extensivity are often confused. However, they are not the same.

As long as the molecular interactions are short-ranged, the entropy of the macro-
scopic system will be additive. Nevertheless, most real systems are not extensive. A
simple example is given by a container of gas that can adsorb molecules on its walls. As
the size of the container is varied, the surface-to-volume ratio varies, and the fraction
of the molecules adsorbed on the walls also varies. The properties of the system will
depend on the surface-to-volume ratio, and the entropy will not be extensive.

Even crystals or liquids with free boundary conditions will have contributions to
the energy and free energies from surfaces and interfaces. It is important to be able
to treat such systems, so that surface properties can be unambiguously defined and
studied.

On the other hand, we are often interested in the bulk properties of a material and
would like to investigate its thermodynamic behavior without concerning ourselves
with surfaces or interfaces. In these circumstances it is reasonable to consider an
homogeneous and extensive system consisting entirely of the material of interest. Such
a system would satisfy the postulate of extensivity.

13.1 The Euler Equation

If a system is extensive its energy is an homogeneous first-order function, and satisfies
eq. (13.1), λU(S, V,N) = U(λS, λV, λN), for any value of λ.
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If we differentiate eq. (13.1) with respect to λ, we find

U(S, V,N) =
∂U(λS, λV, λN)

∂(λS)
∂(λS)

∂λ

+
∂U(λS, λV, λN)

∂(λV )
∂(λV )

∂λ

+
∂U(λS, λV, λN)

∂(λN)
∂(λN)

∂λ
(13.2)

Setting λ = 1, this becomes

U(S, V,N) =
∂U(S, V,N)

∂S
S +

∂U(S, V,N)
∂V

V +
∂U(S, V,N)

∂N
N (13.3)

If we now substitute for the partial derivatives, we find

U = TS − PV + μN (13.4)

which is known as the Euler equation.

Note that the Euler equation is trivial to remember if you have memorized
eq. (10.27), which states: dU = TdS − PdV + μdN .

The Euler equation can also be expressed in terms of the entropy.

S =
(

1
T

)
U +
(

P

T

)
V −
(μ

T

)
N (13.5)

This equation can be found directly from the homogeneous first-order property of the
entropy given in eq. (13.1), or more simply by rewriting eq. (13.4).

The most important consequence of extensivity is the Euler equation. It can be
extremely useful, but it must be kept in mind that it is valid only for extensive systems.

13.2 The Gibbs–Duhem Relation

If a system is extensive, the three intensive parameters, T , P , and μ are not inde-
pendent. The Gibbs–Duhem relation, which can be derived from the Euler equation,
makes explicit the connection between changes in these parameters.

First, we can write the complete differential form of eq. (13.4).

dU = TdS − PdV + μdN + SdT − V dP + Ndμ (13.6)

Comparing eq. (13.6) to the differential form of the First Law, eq. (10.27),

dU = TdS − PdV + μdN (13.7)
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and subtracting the one from the other, we find the Gibbs–Duhem relation.

0 = SdT − V dP + Ndμ (13.8)

Another way of writing this is to exhibit the change in μ as a function of the changes
in T and P .

dμ = −
(

S

N

)
dT +

(
V

N

)
dP (13.9)

These forms of the Gibbs–Duhem relation involve the entropy per particle and
the volume per particle, which might not be the most convenient quantities to work
with. If we carry out the same derivation starting with the fundamental relation in
the entropy representation, S = S(U, V,N), we find an alternative formulation of the
Gibbs–Duhem relation.

d
( μ

T

)
=
(

U

N

)
d

(
1
T

)
+
(

V

N

)
d

(
P

T

)
(13.10)

For our simple example of a one-component system, we can see that only two
parameters are free. For any changes in the temperature or pressure, the change in the
chemical potential is fixed by eq. (13.9) or (13.10). The number of free parameters
needed to specify a thermodynamic system is called the number of thermodynamic
degrees of freedom for the system. A simple, one-component system has two degrees
of freedom.

The Euler equation and the Gibbs–Duhem relation can both be generalized to r
components by including a chemical potential term μjdNj for each component j in
the differential form of the fundamental relation.

dU = TdS − PdV +
r∑

j=1

μjdNj (13.11)

The Gibbs–Duhem relation becomes

0 = SdT − V dP +
r∑

j=1

Njdμj (13.12)

A direct consequence is that if we have an extensive system with r components, it will
have r + 1 thermodynamic degrees of freedom.

13.3 Reconstructing the Fundamental Relation

We have seen in Section 8 that although an equation of state contains thermodynamic
information, the information is not complete. For a general system we can only
reconstruct the fundamental relation and obtain complete information if we know
all three equations of state for a one-component system, or all r + 2 equations of state
for a system with r components.
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An important consequence of the Gibbs–Duhem relation is that for extensive
systems we only need r + 1 equations of state for an r-component system to recover
the fundamental relation and with it access to all thermodynamic information.

As an example, consider the classical, one-component ideal gas. Suppose we were
to know only two of the three equations of state.

PV = NkBT (13.13)

and

U =
3
2
NkBT (13.14)

If we can calculate the third equation of state, we can substitute it into the Euler
equation to find the fundamental relation.

To carry out this project, it is convenient to introduce the energy per particle
u = U/N and the volume per particle v = V/N . The ideal gas law in the form

P

T
= kBv−1 (13.15)

gives us

d

(
P

T

)
= −kBv−2dv (13.16)

and the energy equation

1
T

=
3
2
kBu−1 (13.17)

gives us

d

(
1
T

)
= −3

2
kBu−2du (13.18)

Inserting eqs. (13.16) and (13.18) into the Gibbs–Duhem relation, eq. (13.10),

d
( μ

T

)
= ud

(
1
T

)
+ v

(
P

T

)
(13.19)

we find

d
( μ

T

)
= −u

3
2
kBu−2du − vkBv−2dv = −3

2
kBu−1du − kBv−1dv (13.20)

Integrating eq. (13.20) we obtain the third equation of state.

μ

T
= −3

2
kB ln(u) − kB ln(v) + X (13.21)
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An arbitrary constant of integration, X, is included in this equation, which reflects
the arbitrary constant in classical expressions for the entropy. Putting these results
together to find a fundamental relation is left as an exercise.

13.4 Thermodynamic Potentials

The Euler equation eq. (13.4) puts strong restrictions on thermodynamic potentials
introduced in Chapter 12 for extensive systems in the form of alternative expressions.
For the thermodynamic potentials F , H, and G, we have the following identities for
extensive systems.

F = U − TS = −PV + μN (13.22)

H = U + PV = TS + μN (13.23)

G = U − TS + PV = μN (13.24)

Note that eq. (13.24) expresses the chemical potential as the Gibbs free energy per
particle for extensive systems.

μ =
G

N
(13.25)

The thermodynamic potential U [T, P, μ] vanishes for extensive systems.

U [T, P, μ] = U − TS + PV − μN = 0 (13.26)

For this reason, U [T, P, μ] is often omitted in books on thermodynamics that restrict
the discussion to extensive systems. However, U [T, P, μ] does not vanish for general
thermodynamic systems, and it is sensitive to surface and interface properties.
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Thermodynamic Identities

All correct reasoning is a grand system of tautologies, but only God can make
direct use of that fact.

Herbert Simon, political scientist, economist, and psychologist
(1916–2001), Nobel Prize in Economics, 1978

14.1 Small Changes and Partial Derivatives

Many of the questions that arise in thermodynamics concern the effects of small
perturbations on the values of the parameters describing the system. Even when
the interesting questions concern large changes, the best approach to calculations
is usually through adding up a series of small changes. For these reasons, much of
thermodynamics is concerned with the response of a system to small perturbations.
Naturally, this takes the mathematical form of calculating partial derivatives.

Ultimately, the values of some partial derivatives must be found either from
experiment or from the more fundamental theory of statistical mechanics. However, the
power of thermodynamics is that it is able to relate different partial derivatives through
general identities that are valid for all thermodynamic systems. In this chapter we will
develop the mathematical tools needed to derive such thermodynamic identities.

14.2 A Warning about Partial Derivatives

For much of physics, partial derivatives are fairly straightforward: if we want to
calculate the partial derivative with respect to some variable, we treat all other
variables as constants and take the derivative in the same way.

However, in thermodynamics it is rarely obvious what the ‘other’ variables are.
Consequently, it is extremely important to specify explicitly which variables are being
held constant when taking a partial derivative.

For example, consider the innocent-looking partial derivative, ∂U/∂V , for a clas-
sical ideal gas. If we hold T constant,

(
∂U

∂V

)
T,N

=
∂

∂V

(
3
2
NkbT

)
= 0 (14.1)
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but if we hold P constant,(
∂U

∂V

)
P,N

=
∂

∂V

(
3
2
PV

)
=

3
2
P (14.2)

When S is held constant we can use the equation dU = TdS − PdV to see that(
∂U

∂V

)
S,N

= −P (14.3)

We find three different answers—one positive, one negative, and one zero—just from
changing what we are holding constant!

Don’t forget to write explicitly what is being held constant in a partial derivative!

14.3 First and Second Derivatives

Since you memorized eq. (10.27) long ago, you know the first derivatives of the
fundamental relation in the energy representation.(

∂U

∂S

)
V,N

= T (14.4)

(
∂U

∂V

)
S,N

= −P (14.5)

(
∂U

∂N

)
S,V

= μ (14.6)

Since you also know how to find the Legendre transform of the differential form of
a fundamental relation, you know the first derivatives of the Gibbs free energy.(

∂G

∂T

)
V,N

= −S (14.7)

(
∂G

∂P

)
S,N

= V (14.8)

(
∂G

∂N

)
S,V

= μ (14.9)

Essentially, we find various subsets of U, S, T, V, P, μ, and N when we take a first
partial derivative of the fundamental relation. Second derivatives provide information
about how these quantities change when other quantities are varied.

There are clearly many different second derivatives that can be constructed from all
the variables we have introduced—especially when we remember that holding different
quantities constant produces different partial derivatives. However, the number of
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independent second derivatives is limited. This is the fundamental reason for the
existence of thermodynamic identities.

If we consider the fundamental relation in the energy representation for a simple
system with a single component, first derivatives can be taken with respect to the
three independent variables: S, V , and N . That means that there are a total of six
independent second derivatives that can be formed. All other second derivatives must
be functions of these six.

In many applications the composition of the system is fixed, so that there are
only two independent variables. This means that even if we are dealing with a multi-
component system, there are only three independent second derivatives. For example,
if we consider U(S, V,N) with N held constant, the independent second derivatives
are: (

∂2U

∂S2

)
(14.10)

(
∂2U

∂S∂V

)
=
(

∂2U

∂V ∂S

)
(14.11)

and (
∂2U

∂V 2

)
(14.12)

This is a very important observation, because it implies that only three measure-
ments are needed to predict the results of any experiment involving small changes.
This can be extremely important if the quantity you want to determine is very difficult
to measure directly. By relating it to things that are easy to measure, you can both
increase accuracy and save yourself a lot of work.

On the other hand, knowing that everything is related is not the same as knowing
what that relationship is. The subject of thermodynamic identities is the study of how
to reduce any partial derivative to a function of a convenient set of standard partial
derivatives.

14.4 Standard Set of Second Derivatives

The three standard second derivatives are:

The coefficient of thermal expansion

α =
1
V

(
∂V

∂T

)
P,N

(14.13)

The isothermal compressibility

κT = − 1
V

(
∂V

∂P

)
T,N

(14.14)
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The minus sign in the definition is there to make κT positive, since the volume
decreases when pressure increases.
The specific heat per particle at constant pressure

cP =
T

N

(
∂S

∂T

)
P,N

(14.15)

The specific heat per particle at constant volume

cV =
T

N

(
∂S

∂T

)
V,N

(14.16)

Well, yes, I have listed four of them.
However, because there are only three independent second derivatives, we will be

able to find a universal equation linking them. Usually, the first three are the easiest to
measure, and they are taken as fundamental. Trying to measure cV for iron is difficult,
but cP is easy. However, measuring cV for a gas might be easier than measuring cP ,
so it has been included.

If we are interested in the properties of a particular system we might also use the
‘heat capacity’, denoted by a capital C; that is, CP = NcP and CV = NcV .

It should be noted that I have defined cP and cV as specific heats per particle. It
is also quite common to speak of the specific heat per mole, for which division by the
number of moles would appear in the definition instead of division by N . It is also
sometimes useful to define a specific heat per unit mass.

Our specific goal for the rest of the chapter is to develop methods for reducing all
possible thermodynamic second derivatives to combinations of the standard set.

The four second derivatives listed in eqs. (14.13) through (14.16) should be mem-
orized. While they are not as important as eq. (10.27), it is useful not to have
to consult them when deriving thermodynamic identities. The brief time spent
memorizing them will be repaid handsomely.

14.5 Maxwell Relations

The first technique we need is a direct application of what you learned about exact dif-
ferentials in Section 10.3.1. Since every differential representation of the fundamental
relation is an exact differential, we can apply eq. (10.11) to all of them.

For example, start with the differential form of the fundamental relation in the
energy representation, eq. (10.27), which you have long since memorized.

dU = TdS − PdV + μdN (14.17)

If N is held constant, this becomes

dU = TdS − PdV (14.18)
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Applying the condition for an exact differential, eq. (10.11), produces a new identity.(
∂T

∂V

)
S,N

= −
(

∂P

∂S

)
V,N

(14.19)

Eq. (14.19) and all other identities derived in the same way are called Maxwell
relations. They all depend on the condition in eq. (10.11) that the differential of a
thermodynamic potential be an exact differential.

The thing that makes Maxwell relations so easy to use is that the differential
forms of the fundamental relation in different representations are all simply related.
For example, to find dF from dU , simply switch T and S in eq. (14.17) and change
the sign of that term.

dF = −SdT − PdV + μdN (14.20)

From this equation, we find another Maxwell relation.

−
(

∂S

∂V

)
T,N

= −
(

∂P

∂T

)
V,N

(14.21)

It is even easy to find exactly the right Maxwell relation, given a particular partial
derivative that you want to transform, by finding the right differential form of the
fundamental relation.

For example, suppose you want a Maxwell relation to transform the following
partial derivative. (

∂T

∂P

)
S,μ

=
(

∂?
∂?

)
?,?

(14.22)

Begin with eq. (14.17) and choose the Legendre transform that

• leaves T in front of dS, so that T is being differentiated;
• changes −PdV to V dP , so that the derivative is with respect to P ; and
• changes μdN to −Ndμ, so that μ is held constant.

The result is the differential form of the fundamental equation in the U [P, μ] repre-
sentation.

dU [P, μ] = TdS + V dP + Ndμ (14.23)

Now apply eq. (10.11) with dμ = 0.(
∂T

∂P

)
S,μ

=
(

∂V

∂S

)
P,μ

(14.24)

Note that you do not even have to remember which representation you are
transforming into to find Maxwell relations. The thermodynamic potential U [P, μ]
is not used sufficiently to have been given a separate name, but you do not need to
know its name to derive the Maxwell relation in eq. (14.24).
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You do have to remember that the Legendre transform changes the sign of the
differential term containing the transformed variables. But that is easy.

14.6 Manipulating Partial Derivatives

Unfortunately, Maxwell relations are not sufficient to derive all thermodynamic iden-
tities. We will still need to manipulate partial derivatives to put them into more
convenient forms. A very elegant way of doing that is provided by the use of Jacobians.

We do have to introduce some new mathematics at this point, but the result will
be that thermodynamic identities become quite easy to derive—perhaps even fun.

14.6.1 Definition of Jacobians

Jacobians are defined as the determinant of a matrix of derivatives.

∂ (u, v)
∂ (x, y)

=

∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣ =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
(14.25)

Since we have only the two variables, x and y, in this definition, I have suppressed
the explicit indication of which variables are being held constant. This is an exception
that should not be imitated.

The definition in eq. (14.25) can be extended to any number of variables, but
there must be the same number of variables in the numerator and denominator; the
determinant must involve a square matrix.

14.6.2 Symmetry of Jacobians

The Jacobian changes sign when any two variables in the numerator or the denom-
inator are exchanged, because the sign of a determinant changes when two rows or
two columns are switched. (Variables cannot be exchanged between numerator and
denominator.)

∂ (u, v)
∂ (x, y)

= −∂ (v, u)
∂ (x, y)

=
∂ (v, u)
∂ (y, x)

= −∂ (u, v)
∂ (y, x)

(14.26)

This also works for larger Jacobians, although we will rarely need them.

∂ (u, v, w, s)
∂ (x, y, z, t)

= −∂ (v, u, w, s)
∂ (x, y, z, t)

=
∂ (v, u, w, s)
∂ (y, x, z, t)

(14.27)
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14.6.3 Partial Derivatives and Jacobians

Consider the Jacobian

∂ (u, y)
∂ (x, y)

=

∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂y

∂x

∂y

∂y

∣∣∣∣∣∣∣ (14.28)

Since

∂y

∂x
= 0 (14.29)

and

∂y

∂y
= 1 (14.30)

we have

∂ (u, y)
∂ (x, y)

=
(

∂u

∂x

)
y

(14.31)

This is the link between partial derivatives in thermodynamics and Jacobians.
We will also see it in an extended form with more variables held constant.

∂ (u, y, z)
∂ (x, y, z)

=
(

∂u

∂x

)
y,z

(14.32)

For example:

∂ (V, T,N)
∂ (P, T,N)

=
(

∂V

∂P

)
T,N

(14.33)

14.6.4 A Chain Rule for Jacobians

The usual chain rule for derivatives takes on a remarkably simple form for Jacobians.

∂ (u, v)
∂ (x, y)

=
∂ (u, v)
∂ (r, s)

∂ (r, s)
∂ (x, y)

(14.34)

To prove this, it is convenient to introduce a more compact notation.

∂u

∂x
≡ ux (14.35)
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Now we can write

∂ (u, v)
∂ (r, s)

∂ (r, s)
∂ (x, y)

=
∣∣∣∣ur us

vr vs

∣∣∣∣
∣∣∣∣ rx ry

sx sy

∣∣∣∣ (14.36)

=

∣∣∣∣∣urrx + ussx urry + ussy

vrrx + vssx vssy + ussy

∣∣∣∣∣
=
∣∣∣∣ux uy

vx vy

∣∣∣∣
=

∂ (u, v)
∂ (x, y)

which proves eq. (14.34).

14.6.5 Products of Jacobians

The following identities are very useful.

∂ (u, v)
∂ (x, y)

∂ (a, b)
∂ (c, d)

=
∂ (u, v)
∂ (c, d)

∂ (a, b)
∂ (x, y)

=
∂ (a, b)
∂ (x, y)

∂ (u, v)
∂ (c, d)

(14.37)

To prove them, we use eq. (14.34) which we showed to be an identity in the previous
subsection.

∂ (u, v)
∂ (x, y)

∂ (a, b)
∂ (c, d)

=
∂ (u, v)
∂ (r, s)

∂ (r, s)
∂ (x, y)

∂ (a, b)
∂ (r.s)

∂ (r, s)
∂ (c, d)

(14.38)

=
∂ (u, v)
∂ (r, s)

∂ (r, s)
∂ (c, d)

∂ (a, b)
∂ (r.s)

∂ (r, s)
∂ (x, y)

=
∂ (u, v)
∂ (c, d)

∂ (a, b)
∂ (x, y)

For many purposes, eq. (14.37) allows expressions of the form ∂ (x, y) to be
manipulated almost as if they were algebraic factors.

14.6.6 Reciprocals of Jacobians

Reciprocals of Jacobians are both simple and useful.
Write the identity in eq. (14.34) with (x, y) set equal to (u, v).

∂ (u, v)
∂ (u, v)

=
∂ (u, v)
∂ (r, s)

∂ (r, s)
∂ (u, v)

(14.39)

But

∂ (u, v)
∂ (u, v)

=
∣∣∣∣uu uv

vu vv

∣∣∣∣ =
∣∣∣∣1 0
0 1

∣∣∣∣ = 1 (14.40)
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so that

∂ (u, v)
∂ (r, s)

= 1
/

∂ (r, s)
∂ (u, v)

(14.41)

Using eq. (14.41) for reciprocals, we can express the chain rule from the previous
section in a particularly useful alternative form.

∂ (u, y)
∂ (x, y)

=
∂ (u, y)
∂ (r, s)

/
∂ (x, y)
∂ (r, s)

(14.42)

Note that eq. (14.41), combined with eq. (14.31), gives us a useful identity for
partial derivatives.

(
∂u

∂x

)
y

= 1

/(
∂x

∂u

)
y

(14.43)

An important application of eq. (14.43) can occur when you are looking for a
Maxwell relation for a derivative like the following.(

∂V

∂S

)
T,N

(14.44)

If you try to find a transform of the fundamental relation, dU = TdS − Pdv + μdN ,
you run into trouble because S is in the denominator of eq. (14.44) and T is being
held constant. However, we use eq. (14.41) to take the reciprocal of eq. (14.44), for
which a Maxwell relation can be found.

1

/(
∂V

∂S

)
T,N

=
(

∂S

∂V

)
T,N

=
(

∂P

∂T

)
V,N

(14.45)

14.7 Working with Jacobians

As a first example of how to use Jacobians to derive thermodynamic identities, consider
the partial derivative of pressure with respect to temperature, holding V and N
constant. (

∂P

∂T

)
V,N

(14.46)

To simplify the notation, we will suppress the explicit subscript N .
The first step is always to take the partial derivative you wish to simplify, and

express it as a Jacobian using eq. (14.31).(
∂P

∂T

)
V

=
∂ (P, V )
∂ (T, V )

(14.47)
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The next step is usually to insert ∂(P, T ) into the Jacobian, using either eq. (14.34)
or eq. (14.42). The reason is that the second derivatives given in Section 14.4—which
constitute the standard set—are all derivatives with respect to P , holding T constant,
or with respect to T , holding P constant. Inserting ∂(P, T ) is a step in the right
direction in either case.

∂ (P, V )
∂ (T, V )

=
∂ (P, V )
∂ (P, T )

/
∂ (T, V )
∂ (P, T )

(14.48)

Next, we have to line up the variables in the Jacobians to produce the correct signs,
remembering to change the sign of the Jacobian every time we exchange variables.

∂ (P, V )
∂ (T, V )

= −∂ (P, V )
∂ (P, T )

/
∂ (V, T )
∂ (P, T )

= −∂ (V, P )
∂ (T, P )

/
∂ (V, T )
∂ (P, T )

(14.49)

The minus sign came from switching T and V in the second factor. I also switched
both top and bottom in the first factor to bring it into the same order as the form
given above. This is not really necessary, but it might be helpful as a memory aid.

Next, we can transform back to partial derivatives.(
∂P

∂T

)
V

= −
(

∂V

∂T

)
P

/(
∂V

∂P

)
T

(14.50)

Using the standard expressions for the coefficient of thermal expansion

α =
1
V

(
∂V

∂T

)
P,N

(14.51)

and the isothermal compressibility

κT = − 1
V

(
∂V

∂P

)
T,N

(14.52)

eq. (14.50) becomes

(
∂P

∂T

)
V

= −V α /(−V κT ) =
α

κT
(14.53)

To see why eq. (14.53) might be useful, consider the properties of lead, which has
a fairly small coefficient of expansion.

α(Pb) = 8.4 × 10−5 K−1 (14.54)

Lead also has a small isothermal compressibility.

κT (Pb) = 2.44 × 10−6 Atm−1 (14.55)
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Inserting these values into eq. (14.53), we find the change in pressure with temperature
for a constant volume for lead.

(
∂P

∂T

)
V,N

= 34.3Atm/K (14.56)

As might be expected, it is very difficult to maintain lead at a constant volume as
the temperature increases. A direct experiment to measure the change in pressure at
constant volume would be extremely difficult. However, since α and κT are known, we
can obtain the result in eq. (14.56) quite easily.

This is a relatively simple case. The most common additional complexity is that
you might have to use a Maxwell relation after you have transformed the derivatives,
but it must be confessed that some identities can be quite challenging to derive.

14.8 Examples of Identity Derivations

The following two examples illustrate further techniques for proving thermodynamic
identities using Jacobians. They are of interest both for the methods used and for the
identities themselves.

14.8.1 The Joule–Thomson Effect

In a ‘throttling’ procedure, gas is continuously forced through a porous plug with a
high-pressure PA on one side and a low-pressure PB on the other. The initial and final
states are in equilibrium. If we consider a volume VA of gas on the left, it will take
up a volume VB after it passes to the right. The energy of this amount of gas on the
right is determined by conservation of energy.

UB = UA + PAVA − PBVB (14.57)

Rearranging this equation, we find that the enthalpy is unchanged by the process,
even though the process is clearly irreversible.

HA = UA + PAVA = UB + PBVB = HB (14.58)

If the pressure change is small, the temperature change is given by the partial
derivative.

dT =
(

∂T

∂P

)
H,N

dP (14.59)
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The partial derivative in eq. (14.59) is called the Joule–Thomson coefficient, μJT .1

μJT =
(

∂T

∂P

)
H,N

(14.60)

We can express the Joule–Thomson coefficient in terms of the standard set of deriva-
tives using Jacobians.(

∂T

∂P

)
H,N

=
∂(T,H)
∂(P,H)

(14.61)

=
∂(T,H)
∂(P, T )

/
∂(P,H)
∂(P, T )

= −
(

∂H

∂P

)
T,N

/(
∂H

∂T

)
P,N

The derivative with respect to P can be evaluated by using the differential form of
the fundamental relation in the enthalpy representation. (The term μdN is omitted
because the total number of particles is fixed.)

dH = TdS + V dP (14.62)(
∂H

∂P

)
T,N

= T

(
∂S

∂P

)
T,N

+ V

(
∂P

∂P

)
T,N

(14.63)

= −T

(
∂V

∂T

)
P,N

+ V

= −TV α + V

= −V (Tα − 1)

The proof of the Maxwell relation used in this derivation will be left as an exercise.
We can also transform the other partial derivative in eq. (14.61) using eq. (14.62).(

∂H

∂T

)
P,N

= T

(
∂S

∂T

)
P,N

+ V

(
∂P

∂T

)
P,N

(14.64)

= NcP

Putting eqs. (14.61), (14.63), and (14.64) together, we find our final expression for the
Joule–Thomson coefficient.

1James Prescott Joule (1818–1889) was a British physicist who had worked on the free expansion of
gases, and William Thomson (1824–1907) was an Irish physicist who continued along the lines of Joule’s
investigations and discovered the Joule–Thomson effect in 1852. Thomson was later elevated to the peerage
with the title Baron Kelvin, and the Joule–Thomson effect is therefore sometimes called the Joule–Kelvin
effect.
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μJT =
V

NcP
(Tα − 1) (14.65)

The Joule–Thomson effect is central to most refrigeration and air-conditioning
systems. When the Joule–Thomson coefficient is positive, the drop in pressure across
the porous plug produces a corresponding drop in temperature, for which we are often
grateful.

14.8.2 cP and cV

The thermodynamic identity linking cP and cV has already been alluded to in
Section 14.4. It is central to the reduction to the three standard partial derivatives by
eliminating cV . This derivation is one of the relatively few times that an expansion of
the Jacobian turns out to be useful in proving thermodynamic identities.

Begin the derivation with cV , suppressing the subscript N for simplicity.

cV =
T

N

(
∂S

∂T

)
V

(14.66)

=
T

N

∂(S, V )
∂(T, V )

=
T

N

∂(S, V )
∂(T, P )

/
∂(T, V )
∂(T, P )

The denominator of the last expression can be recognized as the compressibility.

∂(T, V )
∂(T, P )

=
∂(V, T )
∂(P, T )

=
(

∂V

∂P

)
T

= −V κT (14.67)

The Jacobian in the numerator of the last expression in eq. (14.66) can be expressed
by expanding the defining determinant.

∂(S, V )
∂(T, P )

=
(

∂S

∂T

)
P

(
∂V

∂P

)
T

−
(

∂S

∂P

)
T

(
∂V

∂T

)
P

(14.68)

Now we can identify each of the four partial derivatives on the right of eq. (14.68).(
∂S

∂T

)
P

=
NcP

T
(14.69)

(
∂V

∂P

)
T

= −V κT (14.70)

(
∂S

∂P

)
T

= −
(

∂V

∂T

)
P

= −αV (14.71)

(
∂V

∂T

)
P

= αV (14.72)
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In eq. (14.71), a Maxwell relation has been used to relate the partial derivative to α.
Putting the last six equations together, we obtain

cP = cV +
α2TV

NκT
(14.73)

which is the required identity.
Although it should not be necessary to memorize eq. (14.73), you should be able

to derive it.

14.9 General Strategy

This section summarizes a useful strategy to reduce a given partial derivative to an
algebraic expression containing only the three partial derivatives given in Section 14.4.
These steps might be needed for attacking the most difficult derivations, but not all
steps are necessary in most cases.

1. Express the partial derivative as a Jacobian.
2. If there are any thermodynamic potentials in the partial derivative, bring them

to the numerator by applying eq. (14.42). Unless you have a good reason to do
something else, insert ∂(T, P ) in this step.

3. Eliminate thermodynamic potentials if you know the derivative. For example:(
∂F

∂T

)
V,N

= −S

4. Eliminate thermodynamic potentials by using the differential form of the funda-
mental relation. For example: if you want to evaluate(

∂F

∂P

)
T,N

use

dF = −SdT − PdV + μdN

to find (
∂F

∂P

)
T,N

= −S

(
∂T

∂P

)
T,N

− P

(
∂V

∂P

)
T,N

+ μ

(
∂N

∂P

)
T,N

Note that the first and last terms on the right in this example vanish.
5. If the system is extensive, bring μ to the numerator and eliminate it using the

Gibbs–Duhem relation, eq. (13.9).

dμ = −
(

S

N

)
dT +

(
V

N

)
dP
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For example: (
∂μ

∂V

)
S,N

=
(

S

N

)(
∂T

∂V

)
S,N

−
(

V

N

)(
∂P

∂V

)
S,N

6. Move the entropy to the numerator using Jacobians and eliminate it by either
identifying the partial derivative of the entropy as a specific heat if the derivative
is with respect to T , or using a Maxwell relation if the derivative is with respect
to pressure.

7. Bring V into the numerator and eliminate the partial derivative in favor of α or
κT .

8. Eliminate cV in favor of cP , using the identity in eq. (14.73), derived in the
previous section. (This last step is not always needed, since cV is sometimes
easier to measure than cP .)

14.10 Problems

Problem 14.1

Maxwell relations

Note: This assignment is useless if you just look up the answers in a textbook. You
will not have a book during examinations, so you should do this assignment with book
and notes closed.

Transform the following partial derivatives using Maxwell relations.

1.
(

∂μ

∂V

)
S,N

=
(

∂?
∂?

)
?,?

2.
(

∂μ

∂V

)
T,N

=
(

∂?
∂?

)
?,?

3.
(

∂S

∂P

)
T,N

=
(

∂?
∂?

)
?,?

4.
(

∂V

∂S

)
P,N

=
(

∂?
∂?

)
?,?

5.
(

∂N

∂P

)
S,μ

=
(

∂?
∂?

)
?,?

6.
(

∂P

∂T

)
S,N

=
(

∂?
∂?

)
?,?

7.
(

∂N

∂P

)
S,V

=
(

∂?
∂?

)
?,?
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Problem 14.2

A thermodynamic identity

Express the following thermodynamic derivative in terms of α, κT , cV , and cP using
Jacobians.

(
∂T

∂P

)
S,N

=?

Problem 14.3

Prove the following thermodynamic identity

(
∂cV

∂V

)
T,N

=
T

N

(
∂2P

∂T 2

)
V,N

Problem 14.4

Express the following partial derivative in terms of the usual standard
quantities

(
∂F

∂S

)
T,N

Problem 14.5

Yet another thermodynamic identity

Prove the following thermodynamic derivative and determine what should replace the
question marks. Note that you do not have to reduce this to the standard expressions,
but can leave it in terms of partial derivatives

cV = − T

N

(
∂P

∂T

)
V,N

(
∂?
∂?

)
S,N

Problem 14.6

Compressibility identity

In analogy to the isothermal compressibility,

κT = − 1
V

(
∂V

∂P

)
T,N
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we can define the adiabatic compressibility.

κS = − 1
V

(
∂V

∂P

)
S,N

The name is due to the fact that TdS = −dQ for quasi-static processes.
In analogy to the derivation for the difference in the specific heats at constant

pressure and constant temperature, derive the following thermodynamic identity:

κS = κT − TV α2

NcP

Problem 14.7

Callen’s horrible example of a partial derivative

In his classic book on thermodynamics, Herbert Callen used the following derivative
as an example. (

∂P

∂U

)
G,N

However, he did not complete the derivation. Your task is to reduce this partial
derivative to contain only the standard partial derivatives α, κT , cP , and cV , and,
of course, any of the first derivatives, T, S, P, V, μ, or N .

This derivation will require all the techniques that you have learned for transform-
ing partial derivatives. Have fun!

Problem 14.8

A useful identity

Prove the identity:

∂ (V, S)
∂ (T, P )

=
NV cV κT

T

Problem 14.9

The TdS equations

Prove the following three TdS equations. [N is held constant throughout.]

1. First TdS equation

TdS = NcV dT + (Tα/κT )dV

2. Second TdS equation
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Prove:

TdS = NcP dT − TV αdP

3. Third TdS equation
Three forms:

TdS = NcP

(
∂T

∂V

)
P

dV + NcV

(
∂T

∂P

)
V

dP

or

TdS =
NcP

V α
dV + NcV

(
∂T

∂P

)
V

dP

or

TdS =
NcP

V α
dV +

NcV κT

α
dP

Problem 14.10

Another useful identity

Since we will be using it in statistical mechanics, prove the following identity.(
∂ (βF )

∂β

)
V,N

= U

where β =
1

kBT
.
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Extremum Principles

I worked my way up from nothing to a state of extreme poverty.
Groucho Marx

In Part I we defined the entropy, derived a formal expression for it in classical
statistical mechanics, and established that it is a maximum in equilibrium for an
isolated composite system with constant energy. This last result is important for many
reasons, including providing us with a systematic way of calculating the equilibrium
values of quantities when a constraint is released.

There are several alternative principles, called extremum principles, that also allow
us to calculate equilibrium properties under different thermodynamic conditions. The
derivation of these principles is the main purpose of this chapter.

In this chapter, we derive extremum principles with respect to internal variables in
a composite system. For example, energy could be exchanged through a diathermal
wall, and the extremum condition would tell us how much energy was in each
subsystem in equilibrium.

All extremum principles in this chapter are with respect to extensive variables;
that is, variables that describe how much of something is in a subsystem: for a
simple system, these are just the values of Uα, Vα, or Nα for subsystem α.

This chapter does not contain any extremum principles with respect to the
intensive variables, such as T , P , or μ.

In Chapter 16 we will examine thermodynamic stability between subsystems,
which will lead to conditions on second derivatives with respect to the total volume
or number of particles of the subsystems.

To begin with, corresponding to the principle that the entropy is maximized when
the energy is constant, there is an ‘energy minimum’ principle, which states that the
energy is minimized when the entropy is held constant.

15.1 Energy Minimum Principle

To derive the energy minimum principle, start with the entropy maximum principle.
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Consider the entropy, S, of a composite system as a function of its energy, U ,
and some other parameter, X, which describes the distribution of the amount of
something in the composite system. For example, X could be the number of particles
in a subsystem, NA. When a hole is made in the wall between subsystems A and B,
the value of X = NA at equilibrium would maximize the entropy. In other examples
we have looked at, X could be the energy of a subsystem or the volume of a subsystem
that might vary with the position of a piston. It could not be the temperature, pressure,
or chemical potential of a subsystem, because they are not extensive; that is, they do
not represent the amount of something.

In equilibrium, the entropy is at a maximum with respect to variations in X,
holding U constant. This means that the first partial derivative must vanish, and the
second partial derivative must be negative.(

∂S

∂X

)
U

= 0 (15.1)

(
∂2S

∂X2

)
U

< 0 (15.2)

Near equilibrium, a small change in the entropy can be represented to leading order
by changes in U and X.

dS ≈ 1
2

(
∂2S

∂X2

)
U

(dX)2 +
(

∂S

∂U

)
X

dU (15.3)

Since (
∂S

∂U

)
X

=
1
T

> 0 (15.4)

Eq. (15.3) can also be written as

dS ≈ 1
2

(
∂2S

∂X2

)
U

(dX)2 +
(

1
T

)
dU (15.5)

Now comes the subtle part.
For the analysis of the entropy maximum principle, we isolated a composite system

and released an internal constraint. Since the composite system was isolated, its
total energy remained constant. The composite system went to the most probable
macroscopic state after release of the internal constraint, and the total entropy went
to its maximum. Because of the increase in entropy, the process was irreversible.

Now we are considering a quasi-static process without heat exchange with the rest
of the universe, so that the entropy of the composite system is constant. However, for
the process to be quasi-static we cannot simply release the constraint, as this would
initiate an irreversible process, and the total entropy would increase. Outside forces
are required to change the constraints slowly to maintain equilibrium conditions. This
means that the energy of the composite system for this process is not constant.
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V
A

V
A

V
B

V
B

Fig. 15.1 Piston experiments. The two diagrams each represent a cylinder that is sealed at both

ends and is divided into two subvolumes by a moveable piston. Both systems are thermally isolated,

and cannot exchange heat energy with the rest of the universe. When the piston in the upper

cylinder is released it will move freely until it comes to an equilibrium position that maximizes the

entropy. In the lower cylinder, the piston is attached to a rod that can be pushed or pulled from

outside the cylinder. The piston is moved to a position at which there is no net force on the piston

from the gas in the two subvolumes of the cylinder.

The distinction between the entropy maximum and energy minimum principles
can be illustrated by considering two experiments with a thermally isolated cylinder
containing a piston that separates two volumes of gas. The two experiments are
illustrated in Fig. 15.1.

Entropy maximum experiment: Here the piston is simply released, as illustrated
in the upper picture in 15.1. The total energy is conserved, so that entropy is
maximized at constant energy.

Energy minimum experiment: Here the piston is connected by a rod to some-
thing outside the cylinder, as illustrated in the lower picture in 15.1. The piston
is moved quasi-statically to a position at which the net force due to the pressure
from the gas in the two subvolumes is zero. The total energy of the cylinder has
been reduced. However, since the process is quasi-static and there has been no
heat exchange between the cylinder and the rest of the universe, the total entropy
of the system is unchanged. Energy is minimized at constant entropy.

To determine the change in energy for the process in which the piston is held and
moved quasi-statically to the equilibrium positon, we can turn eq. (15.5) around to
find the leading behavior of dU as a function of dS and dX.

dU ≈ −T

(
∂2S

∂X2

)
U

(dX)2 + TdS (15.6)
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Eq. (15.6) gives us a new way of expressing the equilibrium conditions:(
∂U

∂X

)
S

= 0 (15.7)

and (
∂2U

∂X2

)
S

= −T

(
∂2S

∂X2

)
U

> 0 (15.8)

Since the first partial derivative vanishes, and the second partial derivative is
positive, the energy is a minimum at equilibrium for constant entropy. This is
another consequence of the Second Law of Thermodynamics. Indeed, it is equivalent
to the maximization of the entropy in an isolated system as an expression of the
Second Law.

A consequence of eq. (15.8) is that the maximum work that you can extract from
a system in a process with fixed entropy is given by the change in energy of the
system. To see this, note that maximum efficiency is always achieved by quasi-static
processes. The differential form of the fundamental relation is valid for quasi-static
processes.

dU = TdS − PdV − μdN = TdS + −dW − μdN (15.9)

We can see that if the entropy and the number of particles are held constant, the
change in the energy of the system is equal to the work done on it.

dU = −dW (15.10)

This equation is actually a bit more general than the derivation might indicate. We
might imagine a composite system doing work without changing its total volume, as
in the example at the bottom of Fig. 15.1. The system could do work by exerting a
force on the rod, due to a pressure difference between the two subsystems.

15.2 Minimum Principle for the Helmholtz Free Energy

Both the entropy maximum principle and the energy minimum principle apply to
a situation in which the composite system is thermally insulated from the rest of
the universe. Now consider a different situation, in which the composite system
(and its constituent subsystems) are in contact with a thermal reservoir, so that
the temperature of the composite system is held constant. The entropy maximum
and energy minimum principles no longer apply, because we can transfer energy and
entropy in and out of the thermal reservoir. Nevertheless, we can find an extremum
principle under these conditions.

Under constant temperature conditions, it is natural to use the Helmholtz free
energy, which is the Legendre transform of U with respect to T .

F = U [T ] = U − TS (15.11)
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To analyze the new situation at constant temperature, consider the explicit case
of the composite system of interest in contact with a thermal reservoir at temperature
TR, but thermally isolated from the rest of the universe. At equilibrium with respect
to some thermodynamic variable X (subsystem volume, number of particles, and so
on), the total energy is a minimum. This gives us the equations

∂

∂X
(U + UR) = 0 (15.12)

and

∂2

∂X2
(U + UR) > 0 (15.13)

subject to the condition that the entropy is constant (called the ‘isentropic’ condition).

∂

∂X
(S + SR) = 0 (15.14)

The only energy exchange between the reservoir and the system is in the form of
heat. The differential form of the fundamental relation for the reservoir simplifies to
dUR = TRdSR, which gives us an equation for the partial derivatives.

∂UR

∂X
= TR

∂SR

∂X
(15.15)

The partial derivative of the Helmholtz free energy of the system can now be
transformed to show that it vanishes in equilibrium.

∂F

∂X
=

∂

∂X
(U − TS) (15.16)

=
∂

∂X
(U − TRS)

=
∂U

∂X
− TR

∂S

∂X

=
∂U

∂X
+ TR

∂SR

∂X

=
∂U

∂X
+

∂UR

∂X

=
∂

∂X
(U + UR)

= 0

A similar derivation shows that F is a minimum at equilibrium.
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∂2F

∂X2
=

∂2

∂X2
(U − TS) (15.17)

=
∂2

∂X2
(U − TRS)

=
∂2U

∂X2
− TR

∂2S

∂X2

=
∂2U

∂X2
+ TR

∂2SR

∂X2

=
∂2U

∂X2
+

∂2UR

∂X2

=
∂2

∂X2
(U + UR)

> 0

The maximum work that can be obtained from a system in contact with a thermal
reservoir is not given by the change in U for the system, because energy can be
extracted from the reservoir. However, the maximum work is given by the change in
Helmholtz free energy.

As in the previous section, we note that maximum efficiency is always obtained
with quasi-static processes. The differential form of the fundamental relation in the
Helmholtz free energy representation is valid for quasi-static processes at constant
temperature.

dF = −SdT − PdV − μdN = −SdT + −dW − μdN (15.18)

We can see that if the temperature and the number of particles are held constant, the
change in the Helmholtz free energy of the system is equal to the work done on it.

dF = −dW (15.19)

As was the case for the corresponding eq. (15.10), the work referred to in eq. (15.19)
is more general than −PdV for a composite system.

As was the case for the energy minimum principle, the minimum principle for the
Helmholtz free energy refers to processes in which a constraint on the amount of
something in a subsystem is released quasi-statically. It is therefore not valid to
substitute the temperature or pressure of a subsystem for X in eq. (15.17), even
though it might be tempting. We will discuss second derivatives with respect to
temperature, pressure, and chemical potential in Chapter 16.



162 Extremum Principles

15.3 Minimum Principle for the Enthalpy

When the pressure is held constant, minimizing the enthalpy gives us the condition of
equilibrium. The proof is similar to those in the previous sections.

Let the system of interest be in contact with a constant pressure reservoir at
pressure PR. At equilibrium with respect to some thermodynamic variable X, the
total energy is again a minimum, subject to the constant total volume condition.

∂

∂X
(V + VR) = 0 (15.20)

The only energy exchange between the reservoir and the system is in the form of
work. The differential form of the fundamental relation for the reservoir simplifies to
dUR = −PRdVR, which gives us an equation for the partial derivatives.

∂UR

∂X
= −PR

∂VR

∂X
(15.21)

The partial derivative of the enthalpy of the system can now be transformed to
show that it vanishes in equilibrium.

∂H

∂X
=

∂

∂X
(U + PV ) (15.22)

=
∂

∂X
(U + PRV )

=
∂U

∂X
+ PR

∂V

∂X

=
∂U

∂X
− PR

∂VR

∂X

=
∂U

∂X
+

∂UR

∂X

=
∂

∂X
(U + UR)

= 0

A similar derivation shows that H is a minimum at equilibrium.

∂2H

∂2X
=

∂2

∂2X
(U + PV ) (15.23)

=
∂2

∂X2
(U + PRV )

=
∂2U

∂X2
+ PR

∂2V

∂X2

=
∂2U

∂X2
− PR

∂2VR

∂X2



Minimum Principle for the Gibbs Free Energy 163

=
∂2U

∂X2
+

∂2UR

∂X2

=
∂2

∂X2
(U + UR)

> 0

Changes in the enthalpy can be related to the heat added to a system. For reversible
processes holding both P and N constant, TdS = −dQ.

dH = TdS + V dP + μdN (15.24)

becomes

dH = −dQ (15.25)

Because of eq. (15.25), the enthalpy is often referred to as the ‘heat content’ of a
system. Although this terminology is common in chemistry, I do not recommend it.
It can be quite confusing, since you can add arbitrarily large amounts of heat to a
system without altering its state, as long as you also remove energy by having the
system do work. Heat is not a state function and −dQ is not an exact differential.
Eq. (15.25) equates an exact and an inexact differential only with the restrictions
of dN = 0 and dP = 0, which makes variations in the system one-dimensional.

15.4 Minimum Principle for the Gibbs Free Energy

If a system is in contact with both a thermal reservoir and a pressure reservoir, the
Gibbs free energy is minimized at equilibrium.

∂G

∂X
= 0 (15.26)

∂2G

∂X2
> 0 (15.27)

The proof of these equations is left as an exercise.
For a composite system in contact with both a thermal reservoir and a pressure

reservoir, the Gibbs free energy also allows us to calculate the maximum work that
can be obtained by a reversible process. If a composite system can do work on the
outside world through a rod, as in the bottom diagram in Fig. 15.1, the differential
form of the fundamental relation will be modified by the addition of a term −dWX .

dG = −SdT + V dP + −dWX + μdN (15.28)

For a reversible process with no leaks (dN = 0), constant pressure (dP = 0), and
constant temperature (dT = 0), the change in the Gibbs free energy is equal to the
work done on the system.
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dG = −dWX (15.29)

15.5 Exergy

In engineering applications it is common to introduce another thermodynamic poten-
tial called the ‘exergy’, E, which is of considerable practical value.1 Exergy is used
in the common engineering situation in which the environment provides a reversible
reservoir at temperature, To, and pressure, Po, which are usually taken to be the
atmospheric temperature and pressure.

In engineering textbooks, the exergy is often denoted by the letter E, which could
lead to confusion with the energy. This is especially true for books in which the
energy is denoted by E, making the distinction rely on a difference in font. Reader
beware!

The exergy is defined as the amount of useful work that can be extracted from the
system and its environment. If we use X to denote the internal variable (or variables)
that change when work is done by the system, we can write the exergy as

E(To, Po, X) = −W (X) (15.30)

where W is the work done on the system. (Note that engineering textbooks often use
a different sign convention for W .)

Clearly, exergy is used in essentially the same situation described in the previous
section on the Gibbs free energy, so it is not surprising that the exergy and the Gibbs
free energy are closely related. The main difference is that the exergy is defined so
that it is zero in the ‘dead state’, in which G takes on its minimum value and X takes
on the corresponding value Xo. The dead state is characterized by the impossibility
of extracting any more useful work. If we subtract the value taken on by the Gibbs
free energy in the dead state, we can make explicit the connection to the exergy.

E(To, Po, X) = G(To, Po, X) − G(To, Po, Xo) (15.31)

The equation for the exergy in engineering texts is usually written without reference
to the Gibbs free energy.

E(To, Po, X) = (U − Uo) + Po (V − Vo) − To (S − So) + KE + PE (15.32)

Note that the kinetic energy, KE, and the potential energy, PE, are included explicitly
in this equation, while they are implicit in eq. (15.31).

1The concept of exergy was first introduced in the nineteenth century by the German chemist Friedrich
Wilhelm Ostwald (1853–1932), who in 1909 was awarded the Nobel Prize in Chemistry. Ostwald divided
energy into ‘Exergie’(exergy = useful energy) and ‘Anergie’ (anergy = wasted energy).
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It is a common engineering convention that although the kinetic and potential
energy are included in the exergy, they are not included in the internal energy of
the system, as we have done in the rest of this book. Note that the zero of potential
energy is also assumed to be determined by the environment.

Since the exergy is the maximum amount of work that can be obtained from a
system exposed to the atmospheric temperature and pressure, it is an extremely useful
concept in engineering. An engineer is concerned with how much work can be obtained
from a machine in a real environment, and this is exactly what the exergy provides.

15.6 Maximum Principle for Massieu Functions

Just as minimization principles can be found for F , H, and G, which are Legendre
transforms of U , maximization principles can be found for the Massieu functions,
which are Legendre transforms of the entropy.

The maximization principles can be seen most quickly from the relations

S[1/T ] = −F/T (15.33)

and

S[1/T, P/T ] = −G/T (15.34)

and a comparison with the maximization principles for F and G.

15.7 Summary

The extremum principles derived in this chapter are central to the structure of
thermodynamics for several reasons.

1. We will use them immediately in Chapter 16 to derive stability conditions for
general thermodynamic systems.

2. When stability conditions are violated, the resulting instability leads to a phase
transition, which is the topic of Chapter 17.

3. Finally, in Parts III and IV, we will often find that the most direct calculations
in statistical mechanics lead to thermodynamic potentials other than the energy
or the entropy. The extremum principles in the current chapter are essential for
finding equilibrium conditions directly from such statistical mechanics results.

15.8 Problems

Problem 15.1

Extremum conditions

1. Helmholtz free energy for the ideal gas



166 Extremum Principles

From the expression for the Helmholtz free energy of the ideal gas, calculate
ΔF for an isothermal expansion from volume VA to VB when the system is in
equilibrium with a thermal reservoir at temperature TR. Compare this to the
work done on the system during the same expansion.

2. Gibbs free energy minimum principle
Consider a composite system with a property X that can be varied externally.
[For example, X could be the volume of a subsystem, as discussed in class.]
Prove that at equilibrium, (

∂G

∂X

)
T,P,N

= 0

and (
∂2G

∂X2

)
T,P,N

> 0

3. Let −dW be the work done on the system by manipulating the property X from
outside the system.
Prove that dG = −dW , when the system is in contact with a reservoir that fixes
the temperature at TR and the pressure at PR.
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Stability Conditions

No one welcomes chaos, but why crave stability and predictability?
Hugh Mackay, Australian psychologist

So far, we have implicitly assumed that the systems we have studied are stable. For
example, we have been assuming that the density of a gas will remain uniform, rather
than having most of the particles clump together in one part of the container, leaving
the rest of the volume nearly empty. Gases are usually well behaved in this respect,
but we all know from experience that molecules of H2O can clump together, form
drops, and rain on us.

The question of stability therefore leads naturally to a consideration of phase
transitions, in which the properties of a material change drastically in response to
small changes in temperature or pressure.

In this chapter we will discuss the stability of thermodynamic systems. We will find
that certain inequalities must be satisfied for a system to be stable. The violation of
these inequalities signals a phase transition and a number of interesting and important
phenomena—including rain.

The methods used in this chapter are based on the extremum principles derived
in Chapter 15. Those extremum principles were valid for composite systems, in which
the energy, volume, or particle number of the subsystems was varied.

In this chapter we look inside a composite system to see what conditions a
subsystem must satisfy as a consequence of the extremum principles in Chapter 15.
These are called the ‘intrinsic’ stability conditions.

Since any thermodynamic system could become a subsystem of some composite
system, the stability conditions we derive will be valid for all thermodynamic systems.

16.1 Intrinsic Stability

Several approaches have been developed during the history of thermodynamics to
derive the intrinsic stability conditions. The one used here has the advantage of being
mathematically simple. Its only drawback is that it might seem to be a special case,
but it really does produce the most general intrinsic stability conditions.

Although all stability conditions can be obtained from any of the extremum prin-
ciples derived in Chapter 15, there are advantages to using different thermodynamic
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potentials for different stability conditions to simplify the derivations, as we will see
in the following sections.

16.2 Stability Criteria based on the Energy Minimum Principle

Consider two arbitrary thermodynamic systems. Denote the properties of the first as
S, U , V , N , and so on, and distinguish the properties of the second with a tilde, S̃,
Ũ , Ṽ , Ñ , and so forth. Combine the two systems to form a composite system, which
is thermally isolated from the rest of the universe.

Allow the subsystems to interact with each other through a partition, which can
be fixed or moveable, diathermal or adiabatic, impervious to particles or not, as you
choose. Denote the quantity being exchanged as X. As in the previous chapter, X can
denote any variable that describes how much of something is contained in the system.
For example, the wall might be diathermal and X the energy of a subsystem, or the
wall might be moveable and X the volume of a subsystem. However, X must be an
extensive variable; it cannot be the temperature or pressure.

16.2.1 Stability with Respect to Volume Changes

As we saw in Section 15.1, the total energy is a minimum at equilibrium for constant
total volume. Suppose we have a moveable wall (piston) separating the subsystems,
as in the lower diagram in Fig. 15.1, and we use it to increase V to V + ΔV , while
decreasing Ṽ to Ṽ − ΔV . The energy minimum principle would then demand that the
change in total energy must be non-negative.

ΔUtotal = U(S, V + ΔV,N) − U(S, V,N)

+Ũ(S̃, Ṽ − ΔV, Ñ) − Ũ(S̃, Ṽ , Ñ)

≥ 0 (16.1)

The equality will hold only when ΔV = 0. The volume transferred need not be small;
the inequality is completely general.

Now take the special case that the properties of the two systems are identical.
Eq. (16.1) can then be simplified to give an equation that must be true for a single
system.

U(S, V + ΔV,N) + U(S, V − ΔV,N) − 2U(S, V,N) > 0 (16.2)

This equation must also hold for arbitrary values of ΔS; it is not limited to small
changes.

Now divide both sides of eq. (16.2) by (ΔV )2 and take the limit of ΔV → 0.

lim
ΔV →0

[
U(S, V + ΔV,N) + U(S, V − ΔV,N) − 2U(S, V,N)

(ΔV )2

]
=
(

∂2U

∂V 2

)
S,N

> 0

(16.3)
This gives us a stability condition on a second derivative.
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Since we know that (
∂U

∂V

)
S,N

= −P (16.4)

Eq. (16.3) can also be expressed as a stability condition on a first derivative.

−
(

∂P

∂V

)
S,N

> 0 (16.5)

If we define an isentropic (constant entropy) compressibility in analogy to the isother-
mal compressibility in eq. (14.14),

κS = − 1
V

(
∂V

∂P

)
S,N

(16.6)

we find that κS must also be positive for stability.

−
(

∂P

∂V

)
S,N

=
−1(

∂V

∂P

)
S,

=
V

κS
> 0 (16.7)

or, since V > 0

κS > 0 (16.8)

This means that if you increase the pressure on a system, its volume will decrease.
Eq. (16.8) is true for all thermodynamic systems.

The stability conditions in this chapter are expressed as inequalities for second
partial derivatives of the thermodynamic potentials. This makes them look very
much like the extremum principles in Chapter 15. However, these inequalities do
not represent extremum principles, because the corresponding first derivatives are
not necessarily zero, as they must be at an extremum.

16.2.2 Stability with Respect to Heat Transfer

We can use the same method as in Subsection 16.2.1 to consider the consequences of
transferring some amount of entropy between the subsystems. The energy minimum
principle again demands that the change in total energy be non-negative.

ΔUtotal = U(S + ΔS, V,N) − U(S, V,N)

+Ũ(S̃ − ΔS, Ṽ , Ñ) − Ũ(S̃, Ṽ , Ñ)

≥ 0 (16.9)
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The equality will hold only when ΔS = 0. The entropy transferred need not be small;
this inequality is also completely general.

Now again take the special case that the properties of the two systems are identical.
Eq. (16.9) can then be simplified to give an equation that must be true for a single
system.

U(S + ΔS, V,N) + U(S − ΔS, V,N) − 2U(S, V,N) > 0 (16.10)

This equation must also hold for arbitrary values of ΔS; it is not limited to small
changes in entropy .

Divide both sides of eq. (16.10) by (ΔS)2 and take the limit of ΔS → 0.

lim
ΔS→0

[
U(S + ΔS, V,N) + U(S − ΔS, V,N) − 2U(S, V,N)

(ΔS)2

]
=
(

∂2U

∂S2

)
V,N

> 0

(16.11)

Since we know that (
∂U

∂S

)
V,N

= T (16.12)

eq. (16.11) can be expressed as a stability condition on a first derivative.(
∂T

∂S

)
V,N

> 0 (16.13)

This inequality can be rewritten in terms of the specific heat at constant volume.

(
∂T

∂S

)
V,N

= 1

/(
∂S

∂T

)
V,N

=
T

NcV
> 0 (16.14)

Since the temperature must always be positive, in order for the system to be stable,

cV > 0 (16.15)

This means that if heat is added to a system, its temperature will increase, which
certainly agrees with experience. Eq. (16.15) is valid for all thermodynamic systems.

16.3 Stability Criteria based on the Helmholtz Free Energy
Minimum Principle

Now we extend the stability criteria to cases in which the temperature of the composite
system is held constant. This makes it natural to use the Helmholtz free energy
minimization principle.

Recall that we do not (yet) have an stability condition involving derivatives with
respect to temperature, so we will only look at the case of moving a piston to vary
the volume.
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The experiment we consider is the same as that illustrated in the lower picture
in Fig. 15.1, except that instead of being thermally isolated, the entire cylinder is in
contact with a heat bath at temperature T .

The Helmholtz free energy minimization principle now leads to the condition:

F (T, V + ΔV,N) + F (T, V − ΔV,N) − 2F (T, V,N) > 0 (16.16)

This equation must also hold for arbitrary values of ΔV ; it is not limited to small
changes in the volumes of the subsystems.

Dividing eq. (16.16) by (ΔV )2 and taking the limit of ΔV → 0, we find a new
stability condition.

lim
ΔV →0

[
F (T, V + ΔV,N) + F (T, V − ΔV,N) − 2F (T, V,N)

(ΔV )2

]
=
(

∂2F

∂V 2

)
T,N

> 0

(16.17)

Since we know that (
∂F

∂V

)
T,N

= −P (16.18)

we can rewrite eq. (16.17) as

−
(

∂P

∂V

)
T,N

> 0 (16.19)

Recalling the definition of the isothermal compressibility in eq. (14.14),

κT =
−1
V

(
∂V

∂P

)
T,N

(16.20)

Eq. (16.19) becomes

−
(

∂P

∂V

)
T,N

=
−1(

∂V

∂P

)
T,N

=
1

V κT
> 0 (16.21)

This tells us that the isothermal compressibility is also non-negative for all systems.

κT > 0 (16.22)

16.4 Stability Criteria based on the Enthalpy
Minimization Principle

Next we consider a consequence of the enthalpy minimization principle. Here, we are
looking at a situation in which the total pressure on the system and on each of its
subsystems is constant. We will consider an experiment in which heat is transferred
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between the identical subsystems. The derivation should look familiar, since it follows
the same pattern used in previous derivations.

The enthalpy minimization principle gives us the condition:

H(S + ΔS, P,N) + H(S − ΔS, P,N) − 2H(S, P,N) > 0 (16.23)

This equation must also hold for arbitrary values of ΔS; it is not limited to small
changes.

Dividing eq. (16.23) by (ΔS)2 and taking the limit of ΔS → 0, we find yet another
stability condition.

lim
ΔS→0

[
H(S + ΔS, P,N) + H(S − ΔS, P,N) − 2H(S, P,N)

(ΔS)2

]
=
(

∂2H

∂S2

)
P,N

> 0

(16.24)

Since we know that (
∂H

∂S

)
P,N

= T (16.25)

we can rewrite eq. (16.24) as (
∂T

∂S

)
P,N

> 0 (16.26)

Recalling the definition of the specific heat at constant pressure in eq. (14.15),

cP =
T

N

(
∂S

∂T

)
P,N

(16.27)

Eq. (16.26) becomes (
∂T

∂S

)
P,N

=
1(

∂S

∂T

)
P,N

=
T

NcP
> 0 (16.28)

This tells us that the specific heat at constant pressure is always non-negative.

cP > 0 (16.29)

16.5 Inequalities for Compressibilities and Specific Heats

In Chapter 14 we derived a relationship between the specific heats at constant pressure
and constant volume. According to eq. (14.73),

cP = cV +
α2TV

NκT
(16.30)
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Since all quantities in the second term on the right are non-negative, we immediately
have another inequality.

cP ≥ cV (16.31)

The equality would only occur when α = 0, which can actually happen! Liquid water
has α = 0, and its maximum density at a temperature of 3.98◦ C and atmospheric
pressure. Note that we have no stability condition on the coefficient of thermal
expansion, α, even though we expect most things to expand when heated. This is as
it should be, since there are several examples of materials that contract when heated,
including water just above the freezing point. This does not affect the inequality in
eq. (16.31), since only the square of α occurs in eq. (16.30).

There is an equation and an inequality linking κS and κT that are similar to those
linking cP and cV . However, they are more fun to derive yourself, so they will be left
as an exercise.

16.6 Other Stability Criteria

When we derived stability conditions for various second derivatives, we explicitly
excluded derivatives with respect to T , P , or μ. Addressing this omission turns out
to be quite easy, but requires method different from that used in Chapters 15 and 16.
One example will reveal the nature of the derivation.

We will derive a stability condition for the second derivative of the Helmholtz
free energy with respect to temperature. We know that the first derivative gives the
negative of the entropy.

(
∂F

∂T

)
V,N

= −S (16.32)

Take the partial derivative of eq. (16.32) with respect to temperature to find an
expression for the quantity in which we are interested.

(
∂2F

∂T 2

)
V,N

= −
(

∂S

∂T

)
V,N

(16.33)

The right-hand side of eq. (16.33) is, of course, equal to −NcV /T , which must be
negative. However, we are more concerned with relating it to the second derivative
of the energy with respect to entropy, because that reveals a general property of
thermodynamic potentials.

The first derivative of the energy with respect to entropy gives the temperature.

(
∂U

∂S

)
V,N

= T (16.34)
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Now take the second derivative of U with respect to S.

(
∂2U

∂S2

)
V,N

=
(

∂T

∂S

)
V,N

> 0 (16.35)

The last inequality in eq. (16.35) is just the stability condition in eq. (16.11) that we
derived earlier in this chapter.

Since we have the identity

(
∂S

∂T

)
V,N

= 1

/(
∂T

∂S

)
V,N

(16.36)

we find that the second partial derivative of F with respect to T must be negative.

(
∂2F

∂T 2

)
V,N

= −
(

∂S

∂T

)
V,N

= −1

/(
∂T

∂S

)
V,N

= −1

/(
∂2U

∂S2

)
V,N

< 0 (16.37)

Eq. (16.37) shows that the second partial derivative of F with respect to T must
have the opposite sign from the second partial derivative of U with respect to S. It
can be seen from the derivation that quite generally the second partial derivative of
the Legendre transform (F in this case) with respect to the new variable (T ) has
the opposite sign from the second partial derivative of the original function (U) with
respect to the old variable (S). It is also a general rule that the two second derivatives
are negative reciprocals of each other.

Because of the simple relationship between the second derivatives of Legendre
transforms, we can skip the explicit derivations of the remaining inequalities and
simply summarize them in Table 16.1.

I highly recommend memorizing the results shown in Table 16.1. Remembering
them is easy because of the simplicity of their derivation, and they can save you
from avoidable errors. It is astonishing how often these inequalities are violated in
published data. Some prominent scientists have even made a hobby of collecting
examples from the literature. Do not let them find any exhibits for their collections
in your work!
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Table 16.1 Summary of inequalities for second partial derivatives of thermodynamic potentials

that are required for stability.

U(S, V,N)
(

∂2U

∂S2

)
V,N

> 0
(

∂2U

∂V 2

)
S,N

> 0

F (T, V,N)
(

∂2F

∂T 2

)
V,N

< 0
(

∂2F

∂V 2

)
T,N

> 0

H(S, P,N)
(

∂2H

∂S2

)
P,N

> 0
(

∂2H

∂P 2

)
S,N

< 0

G(T, P,N)
(

∂2G

∂T 2

)
P,N

< 0
(

∂2G

∂P 2

)
T,N

< 0

16.7 Problems

Problem 16.1

Thermodynamic stability

1. Starting with the stability conditions on the second derivatives of the Helmholtz
free energy, prove that for the Gibbs free energy we have the general inequality:(

∂2G

∂P 2

)
T,N

≤ 0

2. Use this inequality to prove that the isothermal compressibility is positive.

Problem 16.2

A rubber band

The essential issues in the following questions concern whether the sign of some
quantity is positive or negative. Getting the signs right is essential!

Consider an ordinary rubber band. If the length of the rubber band is L, and
we apply a tension τ , a small change in length will change the energy of the rubber
band by −τdL. Assuming the number of molecules in the rubber band is fixed, the
differential form of the fundamental relation in the energy representation is

dU = TdS + τdL

Note that the sign of the τdL term has a positive sign, in contrast to the more common
−PdV term.
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1. Experimental question!

Determine the sign of the quantity
(

∂T

∂L

)
S

experimentally.

Obtain a rubber band—preferably a clean rubber band.
Stretch the rubber band quickly and, using your forehead as a thermometer,

determine whether is becomes hotter or colder. If the rubber band is very clean,
you might try using your lips, which are more sensitive.

Since you are only interested in the sign of the derivative, you do not
really have to carry out the experiment under true adiabatic (constant entropy)
conditions. It will be sufficient if you simply do it quickly.

2. Now imagine that one end of the rubber band is attached to a hook in the
ceiling, while the other end is attached to a weight. After the system is allowed
to come to equilibrium with the weight hanging down, the rubber band is
heated with a hair dryer.

Using the result of your experiment with a rubber band and your knowledge
of thermodynamic identities and stability conditions, predict whether the
weight will rise or fall.



17

Phase Transitions

Life is pleasant. Death is peaceful. It’s the transition that’s troublesome.
Isaac Asimov (1920-1992), biochemist, and author of both

science fiction and non-fiction books.

One of the most interesting branches of thermal physics is the study of phase
transitions. While most of thermodynamics is concerned with the consequences of
analyticity in relating different measurable quantities, phase transitions occur at points
where the analyticity postulate (Section 9.6.5) is violated.

Examples of phase transitions abound. Water can freeze, going from a liquid to a
solid state when the temperature is lowered. Water can also boil, going from a liquid
state to a gaseous state when the temperature is raised. Iodine can sublimate, going
directly from a solid to a gaseous state. In fact, almost all materials can exist in
different states, with abrupt transitions between them.

Water boiling and freezing and iodine sublimating are examples of first-order
transitions; that is, phase transitions in which the extensive variables change dis-
continuously.

An example of a second-order transition is given by the magnetization of iron,
which goes to zero continuously at a ‘critical’ temperature of 1044K. The partial
derivative of the magnetization with respect to temperature is not only discontinuous,
but it diverges as the critical temperature is approached from below.

The classification of phase transitions as first order or second order is a hold-over
from an early classification scheme due to the Austrian physicist Paul Ehrenfest
(1880—1933). Ehrenfest classified phase transitions at which the n-th partial
derivative of the free energy was discontinuous as being n-th order. For first-order
phase transitions this classification is very useful, but for higher-order transitions
it is less so. Phase transitions have turned out to be much more complex and
interesting than Ehrenfest thought. In normal usage his definition of first-order
transitions is retained, but ‘second-order’ generally refers to any transition with
some sort of non-analytic behavior, but continuous first partial derivatives of the free
energy.
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17.1 The van der Waals Fluid

To illustrate some of the basic ideas about phase transitions we will use a model for
a fluid of interacting particles that was invented by the Dutch physicist, Johannes
Diderik van der Waals (1837–1923), who was awarded the Nobel Prize in 1910.

17.2 Derivation of the van der Waals Equation

There are several ways of deriving the van der Waals equations, but they all begin
with making approximations for the changes in the behavior of an ideal gas when
the effects of interactions on the properties are included. As discussed in Chapter 7, a
typical interaction between two particles has the form shown in Fig. 7.1. For very short
distances the interactions between molecules are generally repulsive, while they are
attractive at longer distances. In the van der Waals model the effects of the attractive
and repulsive parts of the interactions between particles are considered separately.
Rather than calculating the properties of the van der Waals fluid directly from a
specific interaction potential of the form shown in Fig. 7.1, we will follow the usual
procedure of introducing a parameter a for the overall strength of the attractive part
of the interaction, and another parameter b for the strength of the repulsive part.

We will start from the Helmholtz free energy for the ideal gas. (X is the usual
constant.)

FIG = −NkBT

[
ln
(

V

N

)
+

3
2

ln (kBT ) + X

]
(17.1)

Since an interaction of the form shown in Fig. 7.1 implies that each particle is
attracted to the particles in its neighborhood, we would expect the average energy of
attraction to be proportional to the density of particles in the neighbor of any given
particle, which we will approximate by the averge density, N/V . The total energy of
attraction for N particles can then be written as −aN2/V , where a > 0 is a constant.

Assuming that the most important effect of the repulsive part of the interaction
potential is a reduction in the available volume, we subtract a correction term
proportional to the number of particles, so that V → V − bN .

Naturally, the constants a and b will be different for different fluids.
With these two changes in eq. (17.1), we find the Helmholtz free energy for the

van der Waals fluid.

FvdW = −NkBT

[
ln
(

V − bN

N

)
+

3
2

ln (kBT ) + X

]
− a

(
N2

V

)
(17.2)

From eq. (17.2) we can use the usual partial derivatives with respect to T and V
to find two equations of state,

P =
NkBT

V − bN
− aN2

V 2
(17.3)
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and

U =
3
2
NkBT − a

(
N2

V

)
(17.4)

by the usual methods.
Note that both van der Waals equations of state, eqs. (17.3) and (17.4), are

unchanged (invariant) if U , V , and N are multiplied by an arbitrary constant λ,
demonstrating that the van der Waals gas is extensive. This is because surfaces and
interfaces are completely neglected in this model, and the fluid is assumed to be
homogeneous.

17.3 Behavior of the van der Waals Fluid

At very high temperatures, the gas expands, the density is small, and V is large in
comparison with the correction term bN . For low density the correction term for the
pressure is also small, so that the predictions of the van der Waals equation, eq. (17.3),
are very close to those of the equation for an ideal gas.

On the other hand, as the temperature is reduced, the deviations from ideal-
gas behavior become pronounced. If the temperature is below a certain critical
temperature, Tc, the deviations from the ideal-gas law are not only large, but the
behavior is qualitatively different.

Below Tc, a plot of P (V ) vs. V looks qualitatively like Fig. 17.1, while above Tc

the slope is everywhere negative. The value of the critical temperature, Tc, can be
found from the condition that P (V ) has an inflection point at which both

(
∂P

∂V

)
T,N

= 0 (17.5)
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Fig. 17.1 Schematic P − V plot of an isotherm (constant temperature) for the van der Waals

equation at a low temperature. The marked points are used to illustrate the calculation of the

location of the phase transition. They are the same points as those marked in Fig. 17.2.
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and (
∂2P

∂V 2

)
T,N

= 0 (17.6)

With a little algebra, eqs. (17.5) and (17.6) can be solved to give:

Vc = 3bN (17.7)

Pc =
a

27b2
(17.8)

kBTc =
8a

27b
(17.9)

A very interesting feature of the van der Waals equation is that although it contains
only two arbitrary constants, a and b, it predicts the three critical values, Vc, Pc, and
Tc. This means that the three values cannot be independent. Indeed, they can be
combined to make a non-trivial prediction for the ratio

PcVc

NkBTc
=

3
8

= 0.375 (17.10)

The measured values of this ratio vary for different materials, but not as much as
might be guessed from such a simple theory. For example, the values of PcVc/NkBTc

for helium, water, and mercury are, respectively, 0.327, 0.233, and 0.909.
If we define the reduced values Ṽ = V/Vc, P̃ = P/Pc, and T̃ = T/Tc, we can write

the van der Waals equation in dimensionless form as

P̃ =
8T̃

3Ṽ − 1
− 3

Ṽ 2
(17.11)

or (
P̃ + 3Ṽ −2

)(
3Ṽ − 1

)
= 8T̃ (17.12)

17.4 Instabilities

The qualitative differences between the PV plot for the low-temperature van der
Waals gas and for an ideal gas are dramatic. The PV plot for an ideal gas is simply
an hyperbola (PV = NkBT ). The plot of a low-temperature isotherm for the van der
Waals gas, shown in Fig. 17.1, has the striking feature that the slope is positve in the
region between points F and D. (

∂P

∂V

)
T,N

> 0 (17.13)
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This is surprising, because we know from Chapter 16 (see eq. (16.19)) that the
derivative in eq. (17.13) must be negative for stability. Therefore, the region of the
van der Waals plot from points F to D in Fig. 17.1 must be unstable.

We noted that the van der Waals equation was derived under the assumption that
the system was homogeneous. The violation of the stability condition in the region
between points F and D marks where this assumption breaks down. This part of the
curve must represent unphysical states.

More insight into the unusual features of the van der Waals equation can be seen
if the axes of Fig. 17.1 are flipped, as shown in Fig. 17.2.

From Fig. 17.2 it can be seen that the van der Waals equation actually predicts
that the volume is a triple-valued function of the pressure in the region between points
B and H. The possibility of three solutions can also be seen directly from the form of
the van der Waals equation. If eq. (17.3) is rewritten as

(
PV 2 + aN2

)
(V − bN) = NkBTV 2 (17.14)

and the left side of eq. (17.14) is expanded, the van der Waals equation is seen to
be a cubic equation in V for fixed P . It can therefore have either one or three real
solutions, which is consistent with Fig. 17.2.

To find the stable states predicted by the van der Waals equation we must eliminate
the section of the curve between points D and F on the basis of instability, but we
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D
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Fig. 17.2 Schematic V − P plot of an isotherm (constant temperature) for the van der Waals

equation at a low temperature. This is a plot of the same function as in Fig. 17.1, but the axes

have been flipped. The marked points are used to illustrate the calculation of the location of the

phase transition. They are the same points as those marked in Fig. 17.1.



182 Phase Transitions

still have to choose between the two remaining solutions. This will be done in the next
section.

17.5 The Liquid–Gas Phase Transition

To resolve the problem of multiple solutions of the van der Waals equation, we need to
go back to Chapter 16 and investigate the stability of the high- and low-density states
in Fig. 17.2. For the stable state, the Gibbs free energy at constant temperature and
pressure should be a minimum. Note that this criterion is not restricted to infinitesimal
variations; it is also valid for the large differences in the volume between the states on
the upper and lower branches in Fig. 17.2.

To use the stability condition on the Gibbs free energy, G, we must be able to
calculate it. Since this is an extensive system, we know two very helpful things.

First, as shown in eq. (13.24) of Chapter 13,

G = U − TS + PV = μN (17.15)

so that the condition that G be a minimum is the same as the condition that μ be a
minimum.

Next, the Gibbs–Duhem equation, given in eq. (13.9),

dμ =
(

S

N

)
dT −

(
V

N

)
dP (17.16)

is valid for the van der Waals fluid. Since Fig. 17.2 is an isotherm (constant temper-
ature), we can set dT = 0 in eq. (17.16) and integrate it to find G or μ as a function
of P .

G = μN =
∫

V dP (17.17)

Starting with point A in Fig. 17.2 and integrating eq. (17.17) to point D, we
find the increasing part of the curve shown in Fig. 17.3. Note that the curvature
of this part of the plot is negative because the integrand (V ) is decreasing. As we
continue to integrate along the curve in Fig. 17.2 from point D to point F , we are
moving in the negative P -direction, so the contributions of the integral are negative,
and the value of G = μN decreases. When we reach point F and continue to point
I, we are again integrating in the positive P -direction and the value of G = μN
increases.

The integration of the van der Waals equation of state in Fig. 17.2, using eq. (17.17),
is peculiar for at least two reasons. First, since the function V = V (P ) is mul-
tivalued, the integration must proceed in three stages: initially in the positive
P -direction, then in the negative P -direction, and finally in the positive P -direction
again. The more problematic feature is that we have already established that the
states corresponding to the part of the function that lies between points D and F in
Figs. 17.1 and 17.2 are unstable. They could only be regarded as equilibrium states if
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they somehow were subject to an added constraint that they remain homogeneous.
However, since we only need the van der Waals equation in the unstable region for
the formal integral, and that part of the curve is an analytic continuation of the
van der Waals isotherm, the procedure is valid—strange, but valid.

The parts of the curve in Fig. 17.3 corresponding to equilibrium states are the
two sections from point A to C and from point G to I, which have the minimum
Gibbs free energy. Note that although the points C and G are distinct in Figs. 17.1
and 17.2, they have the same Gibbs free energy and occupy the same location in
Fig. 17.3.

There are two kinds of instability that occur along the unstable parts of the curve.
First, we have already noted that states corresponding to points between D and F
are unstable to small perturbations because ∂P/∂V > 0 in that region. On the other
hand, ∂P/∂V < 0 in the regions C to D and F to G, so that the corresponding states
are stable to small perturbations. Nevertheless, they are still not equilibrium states,
because there exist states with lower Gibbs free energy. They are unstable in a second
sense: they are ‘globally’ unstable with respect to a large change. The term for such
states is ‘metastable’. Because they are stable to small perturbations, metastable states
can exist for a long time. However, eventually a large fluctuation will occur and the
system will make a transition to the true equilibrium state, which will lower the Gibbs
free energy.
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IH

C,G

Fig. 17.3 Schematic G − P plot for the van der Waals fluid at a low temperature. The function

G = G(P ) is obtained by performing the integral in eq. (17.17) on the van der Waals equation of

state shown in Fig. 17.2.
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Fig. 17.4 Schematic P − V plot of an isotherm (constant temperature) for the van der Waals

equation at a low temperature. The labeled points coincide with those in Fig. 17.1. By the

Maxwell construction, the two shaded areas must have equal areas when the horizontal line

bounding them is at the correct pressure to have equilibrium between the liquid and gas

phases.

17.6 Maxwell Construction

The integration of the van der Waals equation of state in Fig. 17.2, using eq. (17.17),
includes a positive contribution from point C to D, followed by a smaller negative
contribution from D to E. The sum of these two contributions gives a net positive
contribution to the Gibbs free energy. The magnitude of this net positive contribution
is the shaded area under the curve EDC in Fig. 17.4.

The integral from E to F gives a negative contribution, and it is followed by a
smaller positive contribution from F to G, giving a net negative contribution. The
magnitude of this contribution is the shaded area above the curve EFG in Fig. 17.4.

Since the total integral from the point C to the point G must vanish (C and G
have the same Gibbs free energy), the two shaded regions in Fig. 17.4 must have equal
areas. The procedure of adjusting the position of the line CG until the two areas are
equal is known as the Maxwell construction, first noted by the English physicist James
Clerk Maxwell (1831–1879).

17.7 Coexistent Phases

The points C and G in Figs. 17.1, 17.2, 17.3, or 17.4 indicate distinct phases that
are in equilibrium with each other at the same temperature and pressure. The fact
that they are in equilibrium with each other is demonstrated by their having the same
Gibbs free energy in Fig. 17.3. That they are distinct phases is clear because of the
difference in their volumes.

The phase corresponding to point C in the figures corresponds to a small volume
and a high density. We will call it the liquid phase to distinguish it from the gas phase
corresponding to point G, which has a large volume and small density.
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Fig. 17.5 Schematic T − V plot of the coexistence diagram for the van der Waals fluid. The

solid line indicates the liquid and gas phase volumes at each temperature. The dot at the top of

the curve indicates the critical point. The dashed curves indicate the spinodals, which correspond

to the points D and F in Figs. 17.1 through 17.4. Regions of liquid and gas phases are indicated,

as well as regions of unstable and metastable states.

For each temperature, we can draw an isotherm and perform the Maxwell construc-
tion to determine the pressure at which the liquid and gas phases are in equilibrium
with each other, as well as the volumes of the liquid and gas phases.

Fig. 17.5 shows a qualitative plot of the relationship between the liquid and
gas volumes at coexistence and the temperature. The area under the solid curve is
known as the coexistence region, because those temperatures and volumes can only be
achieved by having distinct liquid and gas phases coexisting next to each other. The
dot at the top of the coexistence curve indicates the critical point, with the critical
temperature Tc and the critical volume Vc. As the temperature increases toward Tc

from below, the volumes of the liquid and gas phases approach each other. Above Tc,
there is no distinction between liquid and gas—only a single fluid phase.

The dashed lines in Fig. 17.5 correspond to the points D and F in Figs. 17.1 through
17.4. They are known as ‘spinodals’ and represent the boundaries of the metastable
regions. All states under the dashed lines are unstable.

17.8 Phase Diagram

Equilibrium between liquid and gas phases occurs at a specific pressure for any given
temperature, as determined by the Maxwell construction. The locus of the coexistence
points on a T − P diagram is plotted schematically in Fig. 17.6.

The curve in Fig. 17.6 is known as the ‘coexistence curve’ and separates regions of
liquid and gas. At points along the curve, the liquid and gas phases coexist. The curve
ends in a critical point with, logically enough, critical values of the temperature, Tc,
and pressure, Pc.

At temperatures or pressures above the critical point, there is no distinction
between liquid and gas; there is only a fluid. This has the curious consequence that,
at least in some sense, liquid and gas phases are different aspects of the same phase.
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Fig. 17.6 Schematic P − T plot of the phase diagram of the van der Waals fluid. The solid line

separates the liquid and gas phase regions. The dot at the end of the curve indicates the critical

point.

Consider a process that starts with a liquid on the coexistence curve at a temper-
ature To and pressure Po. Raise the temperature of the liquid at constant pressure.
When the temperature is above Tc, the pressure is increased until it is above Pc.
At this point, the temperature is again lowered until it is at the original value at
To. Now lower the pressure until the original value of Po is reached. The system has
now returned to the original temperature and pressure, but on the other side of the
coexistence curve. It is now in the gas phase.

Since the coexistence curve was not crossed anywhere in the entire process, the
fluid was taken smoothly from the liquid to the gas phase without undergoing a phase
transition. The initial (liquid) and final (gas) phases must, in some sense, represent
the same phase. Considering how obvious it seems that water and steam are different,
it might be regarded as rather surprising to discover that they are not fundamentally
different after all.

17.9 Helmholtz Free Energy

The graph of the Helmholtz free energy F as a function of the volume V for constant
entropy S is qualitatively different than the graph of G as a function of P shown
in Fig. 17.3. The essential difference is that in Fig. 17.3 the independent variable,
P , was intensive, so that the phase transition occurred at a point. In Fig. 17.7 the
independent variable is extensive, so that it takes on different values in the two phases
at a first-order transition.

The first partial derivative of F with respect to V is the negative of the pressure,
so it is negative.

(
∂F

∂V

)
S,N

= −P < 0 (17.18)
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The second partial derivative of F with respect to V is related to the isothermal
compressibility, so it is positive.

(
∂2F

∂V 2

)
S,N

= −
(

∂P

∂V

)
S,N

=
V

κT
> 0 (17.19)

We know from the previous discussion of the P − V diagram of the van der
Waals gas the van der Waals model predicts predicts an unstable region. In Fig. 17.1
this was found between the points D and F and identified by the positive slope in
this region, which would imply a negative compressibility. This violates a stability
condition.

In terms of the Helmholtz free energy, the unstable region is signaled by a negative
curvature, which violates the inequality in eq. (17.19). As a consequence, the schematic
F − V plot exhibits a region of negative curvature between two inflection points, as
shown in Fig. 17.7.

As we saw earlier in this chapter, below Tc the homogeneous solution to the van
der Waals equations is not stable between two values of the volume corresponding to
the liquid (Vl) and the gas (Vg). In this region, the Helmholtz free energy is lower
for coexisting liquid and gas states. The values of F in this coexistence region are
indicated by the straight dashed line in Fig. 17.7. The line is found as the common
tangent to the van der Waals curve at the values Vl and Vg.

It is useful to compare the plot of G vs. P in Fig. 17.3 and the plot of F vs. V in
Fig. 17.7. The former has an intensive variable on the horizontal axis, and the phase
transition occurs at a single value of P . The latter has an extensive variable on the
horizontal axis, and the phase transition occurs over a range of values of V . There are
many diagrams of thermodynamic potentials as functions of various quantities, but
they all fall into one of these two catagories.

Vl Vg V

F

Fig. 17.7 Schematic F − V plot for the van der Waals fluid at a fixed temperature T < Tc.

The straight dashed line indicates the coexistence region in which part of the system is liquid in

equilibrium with the rest of the system in the gas phase. (The true plot has the same features as

shown here, but it is more difficult to see them clearly due to their relative magnitudes. Generating

the true plot is left to the exercises.)
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17.10 Latent Heat

We all know that it takes heat to boil water. More generally, to cross the coexistence
curve in Fig. 17.6 requires adding energy to the liquid. If we add a small amount of
heat −dQ to a system, its entropy changes by an amount dS = −dQ/T . Therefore, there
will be a difference in the entropy between the liquid state corresponding to point G
and the gas state corresponding to the point C in Fig. 17.1.

To calculate the difference in entropy, ΔS, between the liquid and gas phases,
consider a process by which we integrate the equation

dS =
(

∂S

∂V

)
T,N

dV (17.20)

along the isotherm in Fig. 17.1 from point G to point C. Since the process is isothermal,
the total heat needed to go from the liquid to the gas phase will be TΔS.

To find the partial derivative in eq. (17.20) we can use a Maxwell relation associated
with the differential form of the fundamental relation dF = −SdT − PdV + μdN .(

∂S

∂V

)
T,N

=
(

∂P

∂T

)
V,N

(17.21)

With this Maxwell relation, the change in entropy is given by the integral

ΔS =
∫ C

G

(
∂P

∂T

)
V,N

dV (17.22)

Since the partial derivative in eq. (17.22) can be calculated from the van der Waals
equation of state in eq. (17.3), evaluating the integral is straighforward.

The energy per particle needed to make a first-order phase transition is called the
latent heat, denoted by �.

� =
TΔS

N
(17.23)

It is also quite common to denote the energy needed to make a first-order phase
transition for a complete system of N particles as

L = N� = TΔS (17.24)

17.11 The Clausius–Clapeyron Equation

It might be supposed that the coexistence curve in the phase diagram in Fig. 17.6
merely separates the phases and is of no particular significance in itself. However, the
German physicist Rudolf Clausius, whom we have already encountered as a founder of
thermodynamics, and the French physicist Benôıt Paul Émile Clapeyron (1799–1864)
found a remarkable equation that links the slope of the coexistence curve with the
change in volume across the transition and the value of the latent heat.
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Consider two points along the coexistence curve. Denote the liquid phase at the first
point by X and the gas phase at the same temperature and pressure by X ′, with similar
notation for the liquid, Y , and gas, Y ′, phases at the other point. Assume that the
points are very close together, so that the difference in temperature, dT = TY − TX ,
and the difference in pressure, dP = PY − PX , are both small.

Since the liquid and gas phases are in equilibrium, we must have

μX = μX′ (17.25)

and

μY = μY ′ (17.26)

which implies that

μY − μX = μY ′ − μX′ (17.27)

On the other hand, we know from the Gibbs–Duhem equation from eq. (13.9) in
Section 13.2, that

μY − μX =
(

S

N

)
dT −

(
V

N

)
dP (17.28)

and

μY ′ − μX′ =
(

S′

N

)
dT −

(
V ′

N

)
dP (17.29)

Combining these equations, we see that

dP

dT
=

S′ − S

V ′ − V
=

ΔS

ΔV
(17.30)

Comparing eq. (17.30) with the definition of the latent heat in eq. (17.23), we find the
Clausius–Clapeyron equation.

dP

dT
=

�N

TΔV
=

L

TΔV
(17.31)

Note that the latent heat is positive by definition, and most materials expand when
they melt or boil, ΔV > 0. The slopes of almost all coexistence curves are positive, as
is the coexistence curve for the van der Waals gas, shown schematically in Fig. 17.6.

However, ice contracts when it melts, so that ΔV < 0 and dP/dT < 0 along the ice–
water coexistence curve. The negative slope required by the thermodynamics analysis
presented here is confirmed qualitatively and quantitatively by experiment.
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17.12 Gibbs’ Phase Rule

Phase diagrams in a general system can be considerably more complicated than
Fig. (17.6). However, there are limitations on the structure of these diagrams that
are called ‘Gibbs’ phase rule’.

To derive Gibbs’ phase rule, consider a general thermodynamic system with K
components; that is, K different kinds of molecules. Let the number of distinct phases
in equilibrium with each other be denoted by φ. The variables describing this system
are T and P , plus the concentrations of each type of particle in each phase. For
the j-th phase, {x(j)

k = N j
k/N |k = 1, . . . , K}, where N

(j)
k gives the number of type k

particles in the j-th phase. Since the total number of particles in the j-th phase is
N (j) =

∑K
k=1 N

(j)
k , the sum of the concentrations is unity, 1 =

∑K
k=1 x

(j)
k , and there

are only K − 1 independent concentration variables for each of the φ phases. The total
number of variables is then 2 + φ(K − 1).

However, the equilibrium conditions on the chemical potentials limit the number
of independent variables, since the chemical potential of a given component must take
on the same value for every phase. Letting μ

(j)
k denote the chemical potential of the

k-th component in the j-th phase, we have

μ
(1)
k = μ

(2)
k = · · · = μ

(φ)
k (17.32)

Since there are K components, this gives a total of K(φ − 1) conditions on the variables
describing the system.

Putting these two results together, the total number F of independent variables
for a general system with K components and φ phases is

F = 2 + φ(K − 1) − K(φ − 1) (17.33)

or

F = 2 + K − φ (17.34)

This is Gibbs’ phase rule.
As an example, consider the case of a simple system containing only a single kind

of molecule, so that K = 1. If we consider the boundary between normal ice and liquid
water (φ = 2), we see that the number of independent variables is F = 2 + 1 − 2 = 1.
This means that we have one free parameter to describe the boundary between solid
and liquid. In other words, the two phases will be separated by a line in a phase
diagram (a plot of P vs. T ), and the one parameter will tell us where the system is
on that line. The same is true for the boundaries between the liquid and vapor phases
and the solid and vapor phases.

As a second example, consider the triple point of water, at which three
phases come together (φ = 3). In this case, the number of independent variables is
F = 2 + 2 − 3 = 0, so that there are no free parameters; coexistence of the three phases
can occur only at a single point.

The phase diagram of ice is actually quite complicated, and there are at least ten
distinct crystal structures at various temperatures and pressures. Gibbs’ phase rule
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tells us that two different forms of ice can be separated in the phase diagram by a line
and three phases can coexist at a point, but we cannot have four phases coexisting
at a point. And, in fact, four phases do not coexist at any point in the experimental
phase diagram.

17.13 Problems

Problem 17.1

Properties of the van der Waals gas

1. Just for practice, starting from the expression for the Helmholtz free energy,
derive the pressure, P = P (T, V,N).

2. Again starting from the expression for the Helmholtz free energy for the van der
Waals fluid, derive the energy as a function of temperature, volume, and number
of particles.

U = U(T, V,N)

3. Using the conditions for the critical point,(
∂P

∂V

)
T,N

= 0

and (
∂2P

∂V 2

)
T,N

= 0

derive expressions for Pc, Tc, and Vc as functions of a and b.
4. Derive the value of the ratio

PcVc

NkBTc

as a pure number, independent of the values of a and b.

Problem 17.2

Helmholtz free energy near a phase transition

Consider a material described by the phase diagram shown below. A quantity of
this material is placed in a cylinder that is in contact with a thermal reservoir at
temperature Ta. The temperature is held constant, and the pressure is increased as
shown on the phase diagram, through the point b (on the coexistence curve) to the
point c.
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aPa

Ta

b

T

c

P

1. Make a qualitative sketch of the pressure P as a function of volume V during
the process that takes the system from the state a, through the state b, to the
state c. Label the points on the phase diagram corresponding to states a, b, and
c. Label the phases. Explain the signs and relative magnitudes of the slopes of
the lines you draw. Explain any discontinuities in the function or its slope.

2. Sketch the Helmholtz free energy F as a function of the volume V for this process.
Again label the phases and the points corresponding to states a, b, and c. Explain
the relative magnitudes of the slopes and curvatures of the lines you draw. Explain
any discontinuities in the function or its slope.

Problem 17.3

Properties of the van der Waals gas by computation

1. Write a program to compute and plot V as a function of P at constant T for the
van der Waals gas.

2. Modify your program to include a comparison curve for the ideal gas law at the
same temperature.

3. Make plots for values of T that are at, above, and below Tc.
4. For some values of temperature, the plots will have a peculiar feature. What is

it?
5. Make a plot of the chemical potential μ as a function of P . You might want to

include a plot of V vs. P for comparison.
What does the plot of μ vs. P look like at, above, and below Tc?
The data you need to do a numerical integration of the Gibbs-Duhem relation is
the same as you’ve already calculated for the first plot in this assignment. You
just have to multiply the volume times the change in P and add it to the running
sum to calculate μ vs. P .

Problem 17.4

Clausius–Clapeyron relation

The slope of a phase boundary in a P − T phase diagram is not arbitrary. The
Clausius–Clapeyron equation connects it directly to the latent heat and the change in
volume at the transition.
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The change in volume between the liquid and the gas, Vgas − Vliquid can be
approximated by noting that the liquid is much denser than the gas if you are not
too close to the critical point. We can also approximate the latent heat by a constant
under the same assumption.

Find an analytic approximation for the function P (T ) along the liquid–gas phase
boundary. Sketch your answer and compare it to a phase diagram of water that you
can find on the Web.
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The Nernst Postulate: the Third
Law of Thermodynamics

Fourth Law of Thermodynamics: If the probability of success is not almost
one, then it is damn near zero.

David Ellis

In the early part of the twentieth century the German chemist and physicist Walther
Hermann Nernst (1884–1941) formulated the ‘Nernst Postulate’. It has also become
known as the Third Law of Thermodynamics, due to its importance.

The Nernst Postulate: The entropy of a thermodynamic system goes to a constant as the
temperature goes to zero.

This postulate has far-reaching consequences. Most directly, it puts important con-
straints on the behavior of real systems at low temperatures. Even more importantly,
in its universal applicability, it reveals the pervasive influence of quantum mechanics
on macroscopic phenomena.

18.1 Classical Ideal Gas Violates the Nernst Postulate

Since we have only discussed classical statistical mechanics so far in this book, the
Nernst Postulate might seem rather startling. The results for the classical ideal gas
that we derived in Part I are completely inconsistent with it. To see this, consider
eq. (7.2) for the entropy of the classical ideal gas.

S(U, V,N) = kN

[
3
2

ln
(

U

N

)
+ ln
(

V

N

)
+ X

]
(18.1)

If we insert the equation of state for the energy,

U =
3
2
NkBT (18.2)
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we find an equation for the entropy as a function of temperature.

S(T, V,N) = kN

[
3
2

ln
(

3kBT

2

)
+ ln
(

V

N

)
+ X

]
(18.3)

Since ln T → −∞ as T → 0, the entropy of the classical ideal gas does not go to a
constant at zero temperature. In fact, it will be shown in Chapter 19 that the entropies
of all classical systems go to −∞ at zero temperature.

The reason for the validity of the Nernst Postulate for real systems lies entirely in
quantum statistical mechanics, and will be derived in Chapter 22.

18.2 Planck’s Form of the Nernst Postulate

Extending the Nernst Postulate, Max Planck made the stronger statement that the
entropy should not only go to a constant, but that the constant must be zero. This
is, indeed, the form in which the Nernst Postulate is usually remembered—which is
unfortunate, since it is not entirely true. Although Nernst’s formulation of his postulate
is true for all quantum mechanical models and all real systems, Planck’s version is not
always valid.

We will return to a justification of the Nernst Postulate and a discussion of Planck’s
alternative in Chapter 22 on quantum statistical mechanics.

18.3 Consequences of the Nernst Postulate

Why is the Nernst Postulate important? One of the main reasons is that it places
severe limits on the low-temperature behavior of the specific heat and the coefficient
of thermal expansion.

18.3.1 Specific Heat at Low Temperatures

The first consequence of the Nernst Postulate is that the specific heat of anything
must go to zero at zero temperature.

To prove this statement, use the connection between a small amount of heat, −dQ,
added to a system and the corresponding change in entropy, dS, in eq. (10.23).

dS =
−dQ

T
(18.4)

We can relate the change of temperature to −dQ through the specific heat, which is
defined in Section 14.4 as

cX(T ) =
N

T

(
∂S

∂T

)
X,N

(18.5)

where X stands for either V or P , depending on which is held constant for the
experiment in question. The heat added is therefore

−dQ = cX(T )dT (18.6)
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where we have explicitly indicated the temperature-dependence of the specific heat.
Putting eqs. (18.4) and (18.6) together and integrating, we find an expression for the
change in entropy between the temperatures T1 and T2,

S(T2) − S(T1) =
∫ 2

1

−dQ

T
=
∫ T2

T1

cX(T )
T

dT (18.7)

Now suppose that the specific heat went to a constant in the limit of zero
temperature.

lim
T→o

cX(T ) = co (18.8)

Then, for sufficiently low temperatures, we could approximate the specific heat by co

to calculate the change in entropy.

S(T2) − S(T1) ≈
∫ T2

T1

co

T
dT = co(ln T2 − lnT1) (18.9)

In the limit that T1 goes to zero, eq. (18.9) implies that S(T2) − S(T1) → ∞, which
contradicts the Nernst Postulate. Therefore, the Nernst Postulate requires that the
specific heat of anything go to zero at zero temperature.

We have already seen by calculating limT→0 S(T ) for the classical ideal gas, that
it violates the Nernst Postulate. This can also be seen from the fact that the specific
heat at constant volume does not go to zero at zero temperature, but instead has the
constant value cV = (3/2)kB .

18.4 Coefficient of Thermal Expansion at Low Temperatures

Another consequence of the Nernst Postulate is that the coefficient of thermal expan-
sion, defined in Section 14.4 as

α(T ) =
1
V

(
∂V

∂T

)
P,N

(18.10)

must also vanish at zero temperature. To see why this is true, note that a Maxwell
relation that can be derived from

dG = −SdT + V dP + μdN (18.11)

gives us a relationship between a derivative of the entropy and the coefficient of thermal
expansion. (

∂S

∂P

)
T,N

= −
(

∂V

∂T

)
P,N

= −V α(T ) (18.12)

If the entropy goes to a constant that is independent of pressure, this gives us

lim
T→0

α(T ) = 0 (18.13)
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18.5 Summary and Signposts

In Part I of this book we developed the foundations of classical statistical mechanics
based on the existence of atoms and some assumptions about model probabilities.
We followed Boltzmann in defining the entropy in terms of the logarithm of the
probability distribution of macroscopic observables in a composite system, and we
derived a general formula for the entropy of a classical system of interacting particles.
For the special case of non-interacting particles (the classical ideal gas), we explicitly
evaluated the entropy as a function of energy, volume, and number of particles.

In Part II we developed the theory of thermodynamics on the basis of the general
properties of the entropy that we found in Part I. This led us to develop power-
ful methods for generating exact relationships between measurable thermodynamic
quantities.

With this chapter we come to the end of our introduction to thermodynamics, and
with it the end of Part II of the book.

We have seen the power of thermodynamics in relating physical properties that,
at first glance, might seem entirely unrelated to each other. On the other hand, we
have seen that thermodynamics makes almost no predictions about the actual value
of any quantity. Indeed, the main exceptions are the predictions for the vanishing of
the specific heat and the coefficient of thermal expansion at zero temperature.

Up to this point, the emphasis has been on the concepts in thermal physics and
their consequences for relationships between measurable quantities. In the remainder of
the book we will develop more powerful methods for carrying out practical calculations
in statistical mechanics.

Part III will discuss classical statistical mechanics, introducing the canonical
ensemble, which is the workhorse of the field. It will also return to the question of
irreversibility and the uniqueness of the model probability assumptions we made in
setting up the foundations of statistical mechanics.

Part IV will discuss quantum statistical mechanics, including black-body radiation,
and Bose–Einstein and Fermi–Dirac statistics. It will also show how quantum mechan-
ics leads naturally to the Nernst Postulate. The book will end with an introduction
to the theory of phase transitions, using the Ising model as an illustration.

By the end of the book you should have a good foundation in both thermodynamics
and statistical mechanics—but it will still be only a foundation. The entire field of
condensed-matter physics will be open to you, with all its complexity and surprises.
May you enjoy your further explorations in this fascinating area.
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Ensembles in Classical Statistical
Mechanics

In theory, there is no difference between theory and practice. In practice,
there is.

Yogi Berra

This chapter begins Part III, in which we go more deeply into classical statistical
mechanics. In Chapter 7, eq. (7.46) provided a formal expression for the entropy
of a general classical system of interacting particles as a function of the energy,
volume, and number of particles. In principle, this completes the subject of classical
statistical mechanics, since it is an explicit formula that determines the fundamental
thermodynamic relation for any classical system of interacting particles. In practice,
it does not work that way.

Although eq. (7.46) is correct, carrying out a 1020-dimensional integral is non-
trivial. It can be done for the ideal gas—which is why that example was chosen for
Part I—but if the particles interact with each other, the whole business becomes much
more difficult.

To make further progress we must develop more powerful formulations of the
theory. The new expressions we derive will enable us to calculate some properties of
interacting systems exactly. More importantly, they will enable us to make systematic
approximations when we cannot find an exact solution.

The development of the new methods in classical statistical mechanics runs parallel
to the development of the various representations of the fundamental relation in
thermodynamics, which was discussed in Chapter 12. For every Legendre transform
used in finding a new thermodynamic potential, there is a corresponding Laplace
transform (defined below) that will take us to a new formulation of classical statistical
mechanics. Just as different Legendre transforms are useful for different problems
in thermodynamics, different Laplace transforms are useful for different problems in
statistical mechanics.

In Part IV we will see that the correspondence between Legendre transforms in
thermodynamics and ensembles in statistical mechanics carries over into quantum
statistical mechanics.
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19.1 Microcanonical Ensemble

In Chapter 7 we defined the classical microcanonical ensemble by a uniform probability
distribution in phase space, subject to the constraints that the particles are all in a
particular volume and that the total energy is constant. The constraint on the positions
was realized mathematically by limiting the integrals over the positions to the volume
containing the particles. The constraint on the energy was expressed by a Dirac delta
function. The Hamiltonian (energy as a function of momentum and position) for a
system of particles with pair-wise interactions is given by

H(p, q) =
N∑

j=1

|�pj |2
2m

+
N∑

j=1

N∑
i>j

φ(�ri, �rj) (19.1)

The energy constraint is expressed by a delta function.

δ(E − H(p, q)) (19.2)

As in eq. (7.46), the entropy of a classical system of interacting particles is given by

S(E, V,N) = k ln Ω(E, V,N) (19.3)

= k ln
[

1
h3NN !

∫
dq

∫
dp δ(E − H(p, q))

]

The integrals
∫
dq
∫
dp in eq. (19.3) are over the 6N -dimensional phase space, which,

unfortunately, makes them difficult or impossible to carry out explicitly for interacting
systems. In this chapter we will investigate several approaches to the problem that
enable us to make accurate and efficient approximations for many cases of interest.
The first approach, which we will consider in the next section, is the use of computer
simulations.

19.2 Molecular Dynamics: Computer Simulations

Computer simulations are remarkably useful for providing us with a good intuitive
feeling for the properties of ensembles in statistical mechanics. The most natural
method of simulating the microcanonical ensemble is known as Molecular Dynamics
(MD). It consists of discretizing time, and then iterating discretized versions of
Newton’s equations of motion. Since Newton’s equations conserve energy, MD is
designed to explore a surface of constant energy in phase space, which is exactly
what we want to do for the microcanonical ensemble.

For simplicity we will restrict the discussion to a single particle in one dimension.
This avoids unnecessary notational complexity (indices) while demonstrating most of
the important features of the method. The extension to more dimensions and more
particles involves more programming, but no new ideas.



Molecular Dynamics: Computer Simulations 203

Consider a single particle in one dimension, moving under the influence of a
potential energy V (x). The equations of motion can be written in terms of the
derivatives of the position and momentum

dx

dt
=

p

m
(19.4)

dp

dt
= −dV (x)

dx
(19.5)

The paths in phase space traced out by the solutions to these equations are called
‘trajectories’.

The simplest way to discretize this equation is to define a time step δt and update
the positions and momentum at every step.

x(t + δt) = x(t) +
p

m
δt (19.6)

p(t + δt) = p(t) − dV (x)
dx

δt (19.7)

While this is not the most efficient method, it is the easiest to program, and it is more
than sufficient for the simulations in the assignments.

There are a quite a few ways of implementing discretized versions of Newton’s
equations—all of which go under the name of Molecular Dynamics. However,
since our purpose is to understand physics rather than to write the most efficient
computer program, we will only discuss the simplest method, which is given in
eqs. (19.6) and (19.7).

There are two caveats:

1. Although solutions of the differential equations of motion (19.4) and (19.5)
conserve energy exactly, the discretized equations (19.6) and (19.7) do not. As
long as the time step δt is sufficiently short, the error is not significant. However,
results should always be checked by changing the time step to determine whether
it makes a difference.

2. Even if energy conservation is not a problem, it is not always true that an MD
simulation will cover the entire surface of constant energy in phase space. If the
trajectories do come arbitrarily close to any point on the constant energy surface,
the system is said to be ergodic. Some examples in the assigned problems are
ergodic, and some are not.

The MD simulations in the assignments will show, among other things, the
distribution of positions in the microcanonical ensemble. The results will become
particularly interesting when we compare them to the position distributions in the
canonical ensemble (constant temperature, rather than constant energy), which we
will explore with the Monte Carlo method in Section 19.11.
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19.3 Canonical Ensemble

In this section we will show how to reduce the mathematical difficulties by calculating
the properties of a system at fixed temperature rather than fixed energy. The result
is known as the canonical ensemble, and it is an extremely useful reformulation of the
essential calculations in statistical mechanics.

The canonical ensemble is the probability distribution in phase space for a system
in contact with a thermal reservoir at a known temperature. The derivation of the
canonical probability distribution is essentially the same as that of the Maxwell–
Boltzmann probability distribution for the momentum of a particle, which was done
in Subsection 8.3.1.

We will carry out the calculation in two different ways. First, we will calculate
the energy distribution between the reservoir and the system of interest, based on the
results summarized in Chapter 7. Next, we will calculate the probability density for
the microstates (points in phase space) of the system of interest and show that the
two calculations are consistent.

19.3.1 Canonical Distribution of the Energy

Assume that the system of interest is in thermal contact with a reservoir at tem-
perature T . The entropy of the reservoir is given by an expression like that given in
eq. (19.3).

SR = kB ln ΩR(ER) (19.8)

We have suppressed the dependence on VR and NR in eq. (19.8) to make the notation
more compact. Assume that the composite system of the thermal reservoir and the
system of interest is isolated from the rest of the universe, so that the total energy of
the composite system is fixed.

ET = E + ER (19.9)

As shown in Chapter 7, eq. (7.31), the probability distribution for the energy in the
system of interest is given by

P (E) =
Ω(E)ΩR(ET − E)

ΩT (ET )
(19.10)

Recall that the most important characteristic of a reservoir is that it is much
bigger than the system of interest, so that ER >> E and ET >> E. We can use these
inequalities to make an extremely good approximation to eq. (19.10). Since ΩR is a
rapidly varying function of energy, it is convenient to take the logarithm of both sides
of eq. (19.10).

lnP (E) = ln Ω(E) + ln ΩR(ET − E) − ln ΩT (ET ) (19.11)

Expand ln ΩR in powers of E.

lnP (E) = ln Ω(E) + ln ΩR(ET ) − E

(
∂ΩR(ET )

∂ET

)
− ln ΩT + O ((E/ET )2

)
(19.12)
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Since the system and the reservoir are at the same temperature in equilibrium,

T = TR (19.13)

and

β =
1

kBT
= βR (19.14)

we have

∂ΩR(ET )
∂ET

= βR = β =
1

kBT
(19.15)

Since ln ΩR(ET ) and ln ΩT are constants, we can replace them in eq. (19.12) with
a single constant that we will write as ln Z. With this change of notation, insert
eq. (19.15) in eq. (19.12).

lnP (E) = ln Ω(E) − βE − lnZ (19.16)

Exponentiating eq. (19.16), we find a general expression for the canonical probability
distribution of the energy.

P (E) =
1
Z

Ω(E) exp(−βE) (19.17)

In eq. (19.17), Z is simply a normalization ‘constant’. It is constant in the sense
that it does not depend on the energy E, although it does depend on T , V , and N ,
which are held constant during this calculation. Using the fact that P (E) must be
normalized, an expression for Z is easy to obtain.

Z(T, V,N) =
∫

Ω(E, V,N) exp(−βE)dE (19.18)

The integral is over all possible values of the energy E.
The kind of integral transformation shown in eq. (19.18) is known as a Laplace

transform. It is similar to a Fourier transform, but the factor in the exponent is real,
rather than imaginary.

Z turns out to be extremely important in statistical mechanics. It even has a special
name: the ‘partition function’. The reason for its importance will become evident in
the rest of the book.

The universal use of the letter Z to denote the partition function derives from its
German name, Zustandssumme: the sum over states. (German Zustand = English
state.) Eq. (19.18) shows that Z is actually defined by an integral in classical
mechanics, but in quantum mechanics the partition function can be written as
a sum over eigenstates, as we will see in Chapter 22.
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19.3.2 Canonical Distribution in Phase Space

This subsection derives the probability density of points in phase space for the
canonical ensemble. This is more fundamental than the distribution of the energy
since P (E) can be derived from the probability density in phase space by integrating
over the delta function δ(E − H(p, q)).

Denote the set of momentum and position variables describing the system of
interest as {p, q} and the corresponding set for the reservoir as {pR, qR}. The usual
assumption of a uniform probability distribution then applies to the total phase space
described by all momentum and position variables from both systems, subject to
conservation of the total energy, ET .

To find the probability distribution in the phase space of the system of interest,
we simply integrate out the variables {pR, qR} to obtain the marginal distribution
P (p, q). This gives us the canonical probability distribution at the temperature of the
reservoir.

As shown in Chapter 7, eq. (7.31), the integral over {pR, qR} gives us ΩR. However,
since the system of interest has an energy H(p, q), the energy in the reservoir is
ET − H(p, q). The resultant equation for the probability distribution in the phase
space of the system of interest can be written as

P (p, q) =
ΩR(ET − H(p, q))

ΩT (ET )
(19.19)

Since the reservoir is much larger than the system of interest, ET >> H(p, q).
Taking the logarithm of both sides of eq. (19.19) and expanding ln ΩR in powers of
H(p, q)/ET , we find

lnP (p, q) = ln ΩR(ET ) − H(p, q)
∂

∂ET
ΩR(ET ) − ln ΩT (ET ) + · · · (19.20)

Recalling that

β = βR ≡ ∂

∂ET
ΩR(ET ) (19.21)

and noting that only the second term on the right in eq. (19.20) depends on p or q,
we can write

lnP (p, q) = −βH(p, q) − ln Z̃(T, V,N) (19.22)

or

P (p, q) =
1

Z̃(T, V,N)
exp[−βH(p, q)] (19.23)

The function Z̃(T, V,N) is given by the normalization condition.

Z̃(T, V,N) =
∫

dq

∫
dp exp[−βH(q, p)] (19.24)
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The integral in eq. (19.24) is over all of phase space.
The only approximation in eq. (19.23) is the assumption that the reservoir is

very large in comparison with the system of interest, which is usually an excellent
approximation.

We still have to relate Z̃(T, V,N) to the partition function Z(T, V,N), which we
will do in the next section.

19.4 The Partition Function as an Integral over Phase Space

If we combine the general equation for Ω, eq. (7.30),

Ω(E, V,N) =
1

h3NN !

∫
dq

∫
dp δ(E − H(q, p)) (19.25)

with the definition of the partition function in eq. (19.18),

Z(T, V,N) =
∫

Ω(E) exp(−βE)dE (19.26)

and carry out the integral over the delta function, we find a very useful expression for
the partition function in terms of an integral over phase space.

Z =
∫

dE
1

h3NN !

∫
dq

∫
dp δ(E − H(q, p)) exp(−βE)

=
1

h3NN !

∫
dq

∫
dp

∫
dE δ(E − H(q, p)) exp(−βE)

=
1

h3NN !

∫
dq

∫
dp exp[−βH(q, p)] (19.27)

The final expression in eq. (19.27) is probably the most important equation for
practical calculations in classical statistical mechanics. You should be able to derive
it, but it is so important that you should also memorize it.

Comparing eq. (19.27) to eq. (19.24), we see that Z̃(T, V,N) must be given by

Z̃(T, V,N) = h3NN !Z (19.28)

The canonical probability density in phase space is then

P (p, q) =
1

h3NN !Z
exp[−βH(p, q)] (19.29)

19.5 The Liouville Theorem

Points in phase space move as functions of time to trace out trajectories. This rather
obvious fact raises disturbing questions about the stability of the canonical distribution
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as a function of time. If a system is described by eq. (19.29) at a given time, will it
still be described by the same distribution at a later time?

It is certainly not the case that an arbitrary, non-equilibrium probability distri-
bution in phase space remains unchanged as time passes. We can see macroscopic
changes in non-equilibrium systems, so the probability distribution must change.

Fortunately, for the canonical ensemble, the probability distribution is stable and
does not change with time. This statement is based on the Liouville theorem, named
after the French mathematician Joseph Liouville (1809–1882).

To prove the Liouville theorem, consider the probability density in phase space
P (p, q). Since points in phase space represent microscopic states, they can neither be
created nor destroyed along a trajectory. We can then regard the points as abstract
‘particles’ moving in a 6N -dimensional space, with P (p, q) corresponding to the density
of such points. As for all gases of conserved particles, the points in phase space must
obey a continuity equation.

∂P (p, q)
∂t

+ ∇ · (P (p, q)�v ) = 0 (19.30)

The gradient in eq. (19.30) is defined by the vector

∇ =
{

∂

∂qj
,

∂

∂pj

∣∣∣∣ j = 1, . . . , 3N

}
(19.31)

and the 6N -dimensional ‘velocity’ is defined by

�v =
{

∂qj

∂t

∂pj

∂t

∣∣∣∣ j = 1, . . . , 3N

}
= { q̇j , ṗj | j = 1, . . . , 3N} , (19.32)

where we have used a dot to indicate a partial derivative with respect to time.
The continuity equation then becomes

∂P

∂t
+

3N∑
j=1

[
∂

∂qj
(P (p, q) q̇j) +

∂

∂pj
(P (p, q) ṗj)

]
= 0 (19.33)

or

∂P

∂t
+ P

3N∑
j=1

[
∂q̇j

∂qj
+

∂ṗj

∂pj

]
+

3N∑
j=1

[
∂P

∂qj
q̇j +

∂P

∂pj
ṗj

]
= 0 (19.34)

Recall in classical mechanics that the time development of a point in phase space is
given by Hamilton’s equations, first derived by the Irish physicist and mathematician
Sir William Rowan Hamilton (1805–1865).

q̇j =
∂H

∂pj
(19.35)

ṗj = −∂H

∂qj
(19.36)
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H = H(p, q) is, of course, the Hamiltonian. These two equations give us an interesting
identity.

∂q̇j

∂qj
=

∂2H

∂qj∂pj
=

∂2H

∂pj∂qj
= −∂ṗj

∂pj
(19.37)

Inserting eq. (19.37) into eq. (19.34), we find that it simplifies to

∂P

∂t
+

3N∑
j=1

[
∂P

∂qj
q̇j +

∂P

∂pj
ṗj

]
= 0 (19.38)

To complete the proof of Liouville’s theorem, we must only insert eq. (19.38) into
the equation for the total derivative of P (p, q) with respect to time.

dP

dt
=

∂P

∂t
+

3N∑
j=1

[
∂P

∂qj
q̇j +

∂P

∂pj
ṗj

]
= 0 (19.39)

The interpetation of eq. (19.39) is that the probability density in the neighborhood
of a moving point remains constant throughout the trajectory.

The application of Liouville’s theorem to the canonical ensemble rests on the
property that the probability density depends only on the total energy. Since the
trajectory of a point in phase space conserves energy, the canonical probability
distribution does not change with time.

19.6 Consequences of the Canonical Distribution

The probability density, P (E), for the energy in the canonical ensemble is extremely
sharply peaked. The reason is that P (E) is the product of two functions that both
vary extremely rapidly with energy: Ω(E) increases rapidly with increasing E, while
exp(−βE) goes rapidly to zero.

To see that this is true, first recall that Ω(E) for the ideal gas has an energy
dependence of the form

Ω(E) ∝ Ef (19.40)

where f = 3N/2. For more general systems, f is usually a relatively slowly varying
function of the energy, but remains of the same order of magnitude as the number
of particles N—at least to within a factor of 1000 or so—which is sufficient for our
purposes.

If we approximate f by a constant, we can find the location of the maximum of
P (E) by setting the derivative of its logarithm equal to zero.

∂ lnP (E)
∂E

=
∂

∂E
[ln Ω(E) − βE − lnZ] =

f

E
− β = 0 (19.41)
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The location of the maximum of P (E) gives the equilibrium value of the energy.

Eeq =
f

β
= fkBT (19.42)

The width of the probability distribution for the energy can be found from the
second derivative if we approximate P (E) by a Gaussian function, as discussed in
connection with applications of Bayes’ theorem in Section 5.5.

∂2 lnP (E)
∂E2

=
∂

∂E

[
f

E
− β

]
= − f

E2
= − 1

σ2
E

(19.43)

Evaluating the expression for the second derivative in eq. (19.43) at E = Eequi, we
find the width of P (E).

σE =
Eeq√

f
. (19.44)

When f is of the order N , and N ≈ 1020 or larger, the relative width of the prob-
ability distribution is about 10−10 or smaller. This is much smaller than the accuracy
of thermodynamic measurements. Note that the 1/

√
N dependence is the same as

we found for the width of the probability distribution for the number of particles in
Chapter 4.

19.7 The Helmholtz Free Energy

The fact that the width of the probability distribution for the energy is roughly pro-
portional to 1/

√
N in the canonical ensemble has an extremely important consequence,

which is the basis for the importance of the partition function.
Consider eq. (19.16) for the logarithm of the canonical probability density for the

energy.

lnP (E) = −βE + ln Ω(E) − lnZ (19.45)

From eq. (7.46), we know that S = kB ln Ω, so we can rewrite eq. (19.45) as

lnZ = −βE + S/kB − lnP (E) (19.46)

= −β(E − TS) − lnP (E)

= −βF − lnP (E)

Since the probability distribution P (E) is normalized and its width is roughly
proportional to 1/

√
N , its height must be roughly proportional to

√
N . If we evaluate

eq. (19.46) at the maximum of P (E), which is located at E = Eeq, the term ln P (E)
must be of the order (1/2) ln N . However, the energy E, the entropy S, and the free
energy F = E − TS are all of order N . If N ≈ 1020, then

lnP (Eeq)
βF

≈ lnN

N
≈ 5 × 10−19 (19.47)
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This means that the last term in eq. (19.46) is completely negligible. We are left with
a simple relationship between the canonical partition function and the Helmholtz free
energy.

lnZ(T, V,N) = −βF (T, V,N) (19.48)

or

F (T, V,N) = −kBT lnZ(T, V,N) (19.49)

To remember this extremely important equation, it might help to recast the familiar
equation

S = kB ln Ω (19.50)

in the form

Ω = exp[S/kB] (19.51)

In carrying out the Laplace transform in eq. (19.18), we multiplied by Ω the factor
exp[−βE] before integrating over E. The integrand in eq. (19.18) can therefore be
written as

Ω exp[−βE] = exp[−βE + S/kB ]

= exp[−β(E − TS)]

= exp[−βF ] (19.52)

19.8 Thermodynamic Identities

Since the postulates of thermodynamics are based on the results of statistical mechan-
ics, it should not be too surprising that we can derive thermodynamic identities directly
from statistical mechanics.

For example, if we take the partial derivative of the logarithm of the partition
function in eq. (19.27) with respect to β, we find that it is related to the average
energy.

∂

∂β
lnZ =

1
Z

∂Z

∂β

=
1
Z

∂

∂β

[
1

h3NN !

∫
dq

∫
dp exp[−βH(q, p)]

]

= − 1
Z

1
h3NN !

∫
dq

∫
dpH(q, p) exp[−βH(q, p)]

= −
∫
dq
∫
dpH(q, p) exp[−βH(q, p)]∫
dq
∫
dp exp[−βH(q, p)]

= −〈E〉 (19.53)
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Since we know that lnZ = −βF , eq. (19.53) is equivalent to the thermodynamic
identity

U = 〈E〉 =
∂(βF )

∂β
(19.54)

which was proved as an exercise in Chapter 14.

19.9 Beyond Thermodynamic Identities

Because statistical mechanics is based on the microscopic structure of matter, rather
than the phenomenology that led to thermodynamics, it is capable of deriving rela-
tionships that are inaccessible to thermodynamics. An important example is a general
relationship between the fluctuations of the energy and the specific heat.

Begin with the expression for the average energy from eq. (19.53).

U = 〈E〉

=
1
Z

1
h3NN !

∫
dq

∫
dpH(q, p) exp[−βH(q, p)]

=
∫
dq
∫
dpH(q, p) exp[−βH(q, p)]∫
dq
∫
dp exp[−βH(q, p)]

(19.55)

Note that the dependence on the temperature appears in only two places in eq. (19.55):
once in the numerator and once in the denominator. In both cases, it appears in an
exponent as the inverse temperature β = 1/kBT . It is usually easier to work with β
than with T in statistical mechanical calculations. To convert derivatives, either use
the identity

dβ

dT
=

dβ

dT

(
1

kBT

)
=

−1
kBT 2

(19.56)

or the identity

dT

dβ
=

d

dβ

(
1

kBβ

)
=

−1
kBβ2

(19.57)

The specific heat per particle at constant volume can then be written as

cV =
1
N

(
∂U

∂T

)
V,N

=
1
N

∂

∂T
〈E〉 =

1
N

−1
kBT 2

∂

∂β
〈E〉 (19.58)

We can now take the partial derivative of 〈E〉 in eq. (19.55)

∂

∂β
〈E〉 =

∂

∂β

[∫
dq
∫
dpH(q, p) exp[−βH(q, p)]∫
dq
∫
dp exp[−βH(q, p)]

]

=
∫
dq
∫
dpH(q, p)(−H(q, p)) exp[−βH(q, p)]∫

dq
∫
dp exp[−βH(q, p)]
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−
∫
dq
∫
dpH(q, p) exp[−βH(q, p)]

∫
dq
∫
dp (−H(q, p)) exp[−βH(q, p)][∫

dq
∫
dp exp[−βH(q, p)]

]2
= −〈E2〉 + 〈E〉2 (19.59)

and use eq. (19.58) to find the specific heat.

cV =
1
N

−1
kBT 2

∂

∂β
〈E〉 =

1
NkBT 2

(〈E2〉 − 〈E〉2) (19.60)

In relating the fluctuations in the energy to the specific heat, eq. (19.60) goes
beyond thermodynamics. It gives us a direct connection between the microscopic
fluctuations and macroscopic behavior. This relationship turns out to be extremely
useful in computational statistical mechanics, where it has been found to be the most
accurate method for calculating the specific heat from a computer simulation.

It should be clear from the derivation of eq. (19.60) that it can be generalized
to apply to the derivative of any quantity of interest with respect to any parameter
in the Hamiltonian. The generality and flexibility of this technique has found many
applications in computational statistical mechanics.

19.10 Integration over the Momenta

A great advantage of working with the canonical partition function is that the integrals
over the momenta can be carried out exactly for any system in which the forces do
not depend on the momenta. This, unfortunately, eliminates systems with moving
particles in magnetic fields, but still leaves us with an important simplification for most
systems of interest. As an example, we will consider the case of pairwise interactions
for simplicity, although the result is still valid for many-particle interactions.

If H(p, q) only depends on the momenta through the kinetic energy, the partition
function in eq. (19.27) becomes

Z =
1

h3NN !

∫
dp

∫
dq exp

⎡
⎣−β

⎛
⎝ N∑

j=1

|�pj |2
2m

+
N∑

j=1

N∑
i>j

φ(�ri, �rj)

⎞
⎠
⎤
⎦

=
1

h3NN !

∫
dp exp

⎡
⎣−β

3N∑
j=1

|�pj |2
2m

⎤
⎦∫ dq exp

⎡
⎣−β

N∑
j=1

N∑
i>j

φ(�ri, �rj)

⎤
⎦

=
1

h3NN !
(2πmkBT )3N/2

∫
dq exp

⎡
⎣−β

N∑
j=1

N∑
i>j

φ(�ri, �rj)

⎤
⎦ (19.61)

where we have used β = 1/kBT in the last line of eq. (19.61). The momenta have been
integrated out exactly.
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19.10.1 The Classical Ideal Gas

For the ideal gas, the interactions between particles vanish [φ(�ri, �rj) = 0], and we can
rederive the main results of Part I in a few lines. The integrals remaining in eq. (19.61)
give a factor of V for each particle, so that

Z =
1

h3NN !
(2πmkBT )3N/2

∫
dq exp(0)

=
1

h3NN !
(2πmkBT )3N/2

V N (19.62)

The logarithm of eq. (19.62) gives the Helmholtz free energy F = −kBT lnZ of
the classical ideal gas as a function of temperature, volume, and number of particles,
which is a representation of the fundamental relation and contains all thermodynamic
information. It is left as an exercise to confirm that the explicit expression for F agrees
with that derived from the entropy of the classical ideal gas in Part I.

19.10.2 Computer Simulation in Configuration Space

Eq. (19.61) is used extensively in Monte Carlo computer simulations because it
eliminates the need to simulate the momenta and therefore reduces the required
computational effort. Monte Carlo computations of the thermal properties of models
in statistical mechanics will be discussed in the next section.

19.11 Monte Carlo Computer Simulations

Just as the Molecular Dynamics method is the most natural way to simulate a
microcanonical ensemble (constant energy), the Monte Carlo (MC) method is the
most natural way to simulate a canonical ensemble (constant temperature). The MC
method ignores the natural trajectories of the system in favor of a random sampling
that reproduces the canonical probability distribution. In practice, applications of MC
to classical statistical mechanics usually simulate the equilibrium canonical probability
distribution for the configurations after the momenta have been integrated out.

Peq(q) =
1
Q

exp[−βV (q)] (19.63)

In eq. (19.63), which follows directly from eq. (19.29) upon integrating out the
momenta, the normalization constant Q plays a role very similar to the partition
function. It is defined by

Q ≡
∫

exp[−βV (q)] dq (19.64)

where the integral goes over the allowed volume in configuration space.
To implement an MC simulation, we first construct a stochastic process for prob-

ability distributions defined in configuration space. A stochastic process is a random
sequence of states (configurations in our case) in which the probability of the next



Monte Carlo Computer Simulations 215

state depends on the previous states and the parameters of the model (temperature,
interaction energies, and so on). Our goal is to find a stochastic process for which
an arbitrary initial probability distribution will evolve into the desired equilibrium
distribution.

lim
t→∞P (q, t) = Peq(q) =

1
Q

exp[−βV (q)] (19.65)

Once we have such a process we can use it to generate states with the equilibrium
probability distiribution and average over those states to calculate thermal properties.

If the next state in a stochastic process does not depend on states visited before
the previous one, it is called a Markov process. Since we will see below that they are
particularly convenient for simulations, we will consider only Markov processes for MC
simulations.

For a given Markov process, we can define a conditional probability for a particle
to be in configuration q′ at time t + δt if it was in configuration q at time t. We will
denote this conditional probability as W (q′|q). (It is also called a transition probability
and is often denoted by W (q → q′) to indicate the direction of the transition.) Since
the transition from one state to the next in a Monte Carlo simulation is discrete, δt is
called the time step and is not and infinitesimal quantity.

The change in the probability density P (q, t) for q between times t and t + δt is
then given by the ‘Master Equation’,

P (q, t + δt) − P (q, t) =
∫

[W (q|q′)P (q′, t) − W (q′|q)P (q, t)] dq′ (19.66)

where the integral in eq. (19.66) goes over all allowed configurations q′. The term
W (q|q′)P (q′, t) in the integrand of eq. (19.66) represents the increase in the probability
of state q due to transitions from other states, while W (q′|q)P (q, t) represents the
decrease in the probability of state q due to transitions out of that state. Obviously,
the conditional (or transition) probabilities must be normalized, so that∫

W (q′|q)dq′ = 1 (19.67)

for all q.
A necessary condition for the simulation to go to equilibrium as indicated in

eq. (19.65) is that once the probability distribution reaches Peq(q), it stays there. In
equilibrium, P (q, t) = Peq(q) is independent of time, and the master equation becomes

Peq(q) − Peq(q) = 0 =
∫

[W (q|q′)Peq(q′) − W (q′|q)Peq(q)] dq′ (19.68)

Although the Markov process will remain in equilibrium as long as the integral in
eq. (19.68) vanishes, the more stringent condition that the integrand vanish turns out
to be more useful.

W (q|q′)Peq(q′) − W (q′|q)Peq(q) = 0 (19.69)
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Eq.(19.69) is called the condition of ‘detailed balance’, because it specifies that the
number of transitions between any two configurations is the same in both directions.

It can be shown that if there is a finite sequence of transitions such that the system
can go from any configuration to any other configuration with non-zero probability
and that detailed balance holds, the probability distribution will go to equilibrium as
defined in eq. (19.65). After the probability distribution has gone to equilibrium, we
can continue the Markov process and use it to sample from Peq(q).

The condition that there is a finite sequence of transitions such that the system can
go from any configuration to any other configuration with non-zero probability is
called ‘ergodicity’. This terminology is unfortunate, because the word ‘ergodicity’
is also used to refer to the property that dynamical trajectories come arbitrarily
close to any given point on an energy surface, as discussed in connection with MD
simulations. It is much too late in the history of the subject to produce words that
clearly distinguish these two concepts, but we may take some consolation in the
fact that one meaning is used only with MC, and the other only with MD.

The great thing about the condition of detailed balance in eq. (19.69) is that we
are able to decide what the conditional probabilities W (q′|q) will be. For simulating
a canonical ensemble, we want to use this power to create a Markov process that
produces the canonical distribution.

lim
t→∞P (q, t) = Peq(q) =

1
Q

exp[−βV (q)] (19.70)

As long as the conditional (transition) probabilities do not vanish, the condition
of detailed balance can be written as

W (q′|q)
W (q|q′) =

Peq(q′)
Peq(q)

= exp[−β(V (q′) − V (q))] (19.71)

or

W (q′|q)
W (q|q′) = exp[−βΔE] (19.72)

where ΔE = V (q′) − V (q). Note that the ‘partition function’, Q, has canceled out of
eq. (19.72)—which is very convenient, since we usually cannot evaluate it explicitly.
There are many ways of choosing the W (q′|q) to satisfy eq. (19.72). The oldest and
simplest is known as the Metropolis algorithm.

Metropolis algorithm:
A trial configuration qtrial is chosen at random.

• If ΔE ≤ 0, the new state is q′ = qtrial.
• If ΔE > 0, the new state is q′ = qtrial with probability exp(−βΔE),

and the same as the old state q′ = q with probability 1 − exp(−βΔE).
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It is easy to confirm that the Metropolis algorithhm satisfies detailed balance.

There are many things that have been swept under the rug in this introduction
to the Monte Carlo method. Perhaps the most serious is that there is nothing in
eq. (19.70) that says that convergence will occur within your computer budget.
Slow MC processes can also make acquiring data inefficient, which has prompted
a great deal of effort to go into devising more efficient algorithms. There are also
many methods for increasing the amount of information acquired from MC (and
MD) computer simulations. Fortunately, there are a number of excellent books on
computer simulation methods available for further study.

We will again restrict our examples in the assignments to a single particle in one
dimension, as we did in Section 19.2 for Molecular Dynamics simulations. Remember
to compare the results of the two simulation methods to see the different kinds of
information each reveals about the thermal properties of the system.

19.12 Factorization of the Partition Function: the Best Trick
in Statistical Mechanics

The key feature of the Hamiltonian that allowed us to carry out the integrals over the
momenta in eq. (19.61) and the integrals over the coordinates in eq. (19.62) is that
the integrand exp[−βH] can be written as a product of independent terms. Writing
a 3N -dimensional integral as a one-dimensional integral raised to the 3N -th power
takes a nearly impossible task and makes it easy.

We can extend this trick to any system in which the particles do not interact with
each other, even when they do interact with a potential imposed from outside the
system. Consider the following Hamiltonian.

H(p, q) =
N∑

j=1

|�pj |2
2m

+
N∑

j=1

φ̃j(�rj) (19.73)

The partition function for the Hamiltonian in eq. (19.73) separates neatly into a
product of three-dimensional integrals.

Z =
1

h3NN !
(2πmkBT )3N/2

∫
dq exp

⎡
⎣−β

N∑
j=1

φ̃j(�rj)

⎤
⎦

=
1

h3NN !
(2πmkBT )3N/2

∫
dq

N∏
j=1

exp
[
−βφ̃j(�rj)

]

=
1

h3NN !
(2πmkBT )3N/2

N∏
j=1

∫
d�rj exp

[
−βφ̃j(�rj)

]
(19.74)
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Eq. (19.74) has reduced the problem from one involving an integral over a 3N -
dimensional space, as in eq. (19.61), to a product of N three-dimensional integrals.

When the three-dimensional integrals are all the same, eq. (19.74) simplifies
further.

Z =
1

h3NN !
(2πmkBT )3N/2

(∫
d�r1 exp

[
−βφ̃1(�r1)

])N

(19.75)

Since a three-dimensional integral can always be evaluated, even if only numerically,
all problems of this form can be regarded as solved.

This trick is used repeatedly in statistical mechanics. Even when it is not possible
to make an exact factorization of the partition function, it is often possible to make a
good approximation that does allow factorization.

Factorization of the partition function is the most important trick you need for
success in statistical mechanics. Do not forget it!

19.13 Simple Harmonic Oscillator

The simple harmonic oscillator plays an enormous role in statistical mechanics. The
reason might be that many physical systems behave as simple harmonic oscillators, or
it might be just that it is one of the few problems we can solve exactly. It does provide
a nice example of the use of factorization in the evaluation of the partition function.

19.13.1 A Single Simple Harmonic Oscillator

First consider a single, one-dimensional, simple harmonic oscillator (SHO). The Hamil-
tonian is given by the following equation, where the subscript 1 indicates that there
is just a single SHO.

H1 =
1
2
Kx2 +

p2

2m
(19.76)

The partition function is found by simplifying eq. (19.27). The integrals over x and
p are both Gaussian, and can be carried out immediately.

Z1 =
1
h

∫ ∞

−∞
dx

∫ ∞

−∞
dp exp

(
−β

(
1
2
Kx2 +

1
2m

p2

))

=
1
h

(2πmkBT )1/2 (2πkBT/K)1/2

=
1
β�

(m

K

)1/2

=
1

β�ω
(19.77)
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where

ω =

√
K

m
(19.78)

is the angular frequency of the SHO.
As we have mentioned earlier, the factor of � has no true significance within classical

mechanics. However, we will see in Section 23.10 that the result in eq. (19.77) does
coincide with the classical limit of the quantum simple harmonic oscillator given in
eq. (23.67).

19.13.2 N Simple Harmonic Oscillators

Now consider a macroscopic system consisting of N one-dimensional simple harmonic
oscillators.

HN =
N∑

j=1

(
1
2
Kjx

2
j +

p2
j

2mj

)
(19.79)

Note that the spring constants Kj and the masses mj might all be different.
Since the oscillating particles are localized by the harmonic potential, we do not

need to consider exchanges of the particles with another system. Therefore, we do
not include an extra factor of 1/N ! to appear in the partition function. Actually,
since N is never varied in this model, a factor of 1/N ! would not have any physical
consequences. However, excluding it produces extensive thermodynamic potentials
that are esthetically pleasing.

After integrating out the momenta, the partition function can be written as

ZN =
1

hN

N∏
j=1

(2πmjkBT )1/2
∫ ∞

−∞
dNx exp

⎛
⎝−β

N∑
j=1

1
2
Kjx

2
j

⎞
⎠

=
1

hN

N∏
j=1

[
(2πmjkBT )1/2

∫ ∞

−∞
dxj exp

(
−β

1
2
Kjx

2
j

)]

=
1

hN

N∏
j=1

[
(2πmjkBT )1/2 (2πkBT/Kj)

1/2
]

=
(

2πkBT

h

)N N∏
j=1

(
mj

Kj

)1/2

=
N∏

j=1

(
1

β�ωj

)
(19.80)
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where

ωj =

√
Kj

mj
(19.81)

is the angular frequency of the j-th SHO.
If all N SHO’s have the same frequency, the partition function simplifies further.

ZN =
(

1
β�ωj

)N

(19.82)

19.14 Problems

Problem 19.1

Two one-dimensional relativistic particles

Consider two one-dimensional relativistic ideal-gas particles with masses confined
to a one-dimensional box of length L. Because they are relativistic, their energies are
given by EA = |pA|c and EA = |pB|c.

Assume that the particles are in thermal equilibrium with each other, and that the
total kinetic energy is E = EA + EB. Use the usual assumption that the probability
density is uniform in phase space, subject to the constraints.

Calculate the probability distribution P (EA) for the energy of one of the particles.

Problem 19.2

Classical simple harmonic oscillator

Consider a one-dimensional, classical, simple harmonic oscillator with mass m and
potential energy

1
2
Kx2

The SHO is in contact with a thermal reservoir (heat bath) at temperature T .
Calculate the classical partition function, Helmholtz free energy, and energy.

Problem 19.3

Canonical ensemble for anharmonic oscillators

We have shown that the classical canonical partition function is given by

Z =
1

h3NN !

∫
dp3N

∫
dq3N exp [−βH(p, q)]
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Consider N non-interacting (ideal gas) particles in an anharmonic potential,

K

r
(|x|r + |y|r + |z|r)

where r is a positive constant.
The full Hamiltonian can be written as:

H(p, q) =
N∑

n=1

p2

2m
+

K

r

3N∑
j=1

|qj |r

Calculate the energy and the specific heat using the canonical partition function.
Hint: The integrals over the momenta shouldn’t cause any problems, since they

are the same as for the ideal gas. However, the integrals over the positions require a
trick that we used in deriving the value of the gaussian integral.

Another hint: You might find that there is an integral that you can’t do, but don’t
need.

Problem 19.4

Partition function of ideal gas

1. Calculate the partition function and the Helmholtz free energy of the classical
ideal gas using the canonical ensemble.

2. Starting with the entropy of the classical ideal gas, calculate the Helmholtz free
energy and compare it with the result from the canonical ensemble.

Problem 19.5

Molecular Dynamics (MD) simulation of a simple harmonic oscillator

This assignment uses the Molecular Dynamics method, which simply consists of
discretizing Newton’s equations of motion, and then iterating them many times to
calculate the trajectory.

Write a computer program to perform a Molecular Dynamics (MD) computer
simulation of a one-dimensional simple harmonic oscillator (SHO).

H =
1
2
Kx2

[You can take K = 1 in answering the questions.]
Include a plot of the potential energy, including a horizontal line indicating the

initial energy. [You will also do Monte Carlo (MC) simulations of the same models
later, so remember to make your plots easy to compare.]

The program should read in the starting position, the size of the time step, and
the number of iterations. It should then print out a histogram of the positions visited
during the simulation.
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Your program should also print out the initial and final energy as a check on
the accuracy of the algorithm. Don’t forget to include the kinetic energy in your
calculation!

1. For a starting value of x = 1.0. Try various values of the size of the time step to
see the effect on the results.
What happens when the time step is very small or very large?

2. Choose x = 1.0 and run the program for an appropriate value of dt. Print out
histograms of the positions visited. [Later, you will compare them with you results
for MC

Problem 19.6

Molecular Dynamics (MD) simulation of an anharmonic oscillator

This assignment again uses the Molecular Dynamics method. Only minor modifications
of your code should be necessary, although I would recommend using functions to
simplify the programming.

Write a computer program to perform a Molecular Dynamics (MD) computer
simulation of a one-dimensional particle in the following potential.

H = Ax2 + Bx3 + Cx4

[The values of A, B, and C should be read in or set at the beginning of the program.
Boltzmann’s constant can again be taken as kB = 1, but the variable should also be
included explicitly in the program.]

Include a plot of the potential energy, including a horizontal line indicating the
initial energy.

The program should read in the starting position, the size of the time step, and
the number of iterations. It should then print out a histogram of the positions visited
during the simulation.

Your program should also print out the initial and final energy as a check on
the accuracy of the algorithm. Don’t forget to include the kinetic energy in your
calculation!

1. Carry out simulations with the values A = −1.0, B = 0.0, and C = 1.0.
First try various starting value of the position x. Choose the starting positions

to adjust the (constant) total energy to take on “interesting” values. Part of the
problem is to decide what might be interesting on the basis of the plot of the
potential energy.

2. Now change the value of B to −1.0, while retaining A = −1.0 and C = 1.0. Again
look for interesting regions.

Problem 19.7

Molecular Dynamics (MD) simulation of a chain of simple harmonic oscil-
lators

This assignment again uses the Molecular Dynamics method, but this time we will
simulate a chain of particles connected by harmonic interactions.
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Write a computer program to perform a Molecular Dynamics (MD) computer
simulation of the following Hamiltonian.

H =
N∑

j=1

p2
j

2m
+

1
2
K

N∑
j=1

(xj − xj−1)
2

Take the particle at x0 = 0 to be fixed.

1. For various (small) values of N , try different values of the time step while
monitoring the change in total energy during the simulation. See if a good choice
of time step agrees with what you found for a single particle.

2. For N = 1, make sure that you get the same answer as you did for HW2. [Just
confirm that you did it; you don’t have to hand it in.]

3. For N = 2 and 3, and random starting values of position and momentum, what
distributions do you get for x1 and xN−1 − xN−2?

4. For N = 10, start particle 1 with an initial position of x[1] = 1.0, let the initial
positions of all other particles be 0.0, and let the initial value of all momenta
be 0.0. What distribution do you get for xj − xj−1 for whatever value of j you
choose?

5. Which results resemble what you might expect if your chain were in equilibrium
at some temperature? Can you estimate what that temperature might be?

Problem 19.8

Molecular Dynamics (MD) simulation of a chain of simple harmonic oscil-
lators - AGAIN

This assignment again uses the MD program you wrote to simulate a chain of particles
connected by harmonic interactions.

H =
N∑

j=1

p2
j

2m
+

1
2
K

N∑
j=1

(xj − xj−1)
2

[The particle at x0 = 0 is fixed.]

1. You know that the average energy of a single simple harmonic oscillator at
temperature T is given by

U = 〈H〉 = kBT,

so that the specific heat is

c = kB.

Demonstrate analytically that the energy per particle and the specific heat per
particle are the same for a harmonic chain and a single SHO without using a
Fourier transform of the Hamiltonian.

2. Modify your program to calculate the expected kinetic energy per particle from
the initial (randomly chosen) energy. Then use the average kinetic energy to
predict an effective temperature.
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3. Modify your program to find the contributions to the specific heat from the
fluctuations of the potential energy under the assumption that the kinetic degrees
of freedom act as a thermal reservoir at the predicted effective temperature.
[The contributions to the specific heat from the momenta are kB/2 per particle.]

4. Calculate the effective temperature and the specific heat for various lengths of
the harmonic chain. To what extent are the relationships between the energy and
the effective temperature and the fluctuations and the specific heat confirmed by
your data?

Problem 19.9

Not-so-simple harmonic oscillators

Consider a one-dimensional, generalized oscillator with Hamiltonian

H = K |x|α

with the parameter α > 0.
Calculate the energy and specific heat as functions of the temperature for arbitrary

values of α.

Problem 19.10

Monte Carlo simulations of not-so-simple harmonic oscillators

Consider a one-dimensional, generalized oscillator with Hamiltonian

H = A |x|α

1. Modify your program for MC simulations to simulate the the potential energy
given in this problem. For values of α = 0.5, 1.0,, abd 4.0, run MC simulations
and compare the results to your theoretical results for the heat capacity from an
earlier assignment.

Problem 19.11

Relativistic particles in a gravitational field

Consider N relativistic ideal-gas particles at temperature T . The particles are confined
to a three-dimensional box of area A and 0 < z < ∞. Because they are relativistic,
the Hamiltonian is given by

H(p, q) =
N∑

j=1

|�pj |c +
N∑

j=1

mgzj

1. Find the probability distribution for the height of a single particle, i.e.: P (z1).
2. Find the average height of a single particle.
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3. In what way did your answer for the average height depend on the relativistic
nature of the particles?

4. Find the probability distribution for the energy of a single particle, E1 = |�p1|c +
mgz1, including the normalization constant.

Problem 19.12

A classical model of a rubber band

The rubber band is modeled as a one-dimensional polymer, that is, a chain of N
monomers. Each monomer has a fixed length δ, and the monomers are connected
end-to-end to form the polymer. Each monomer is completely free to rotate in two
dimensions (there are no steric hinderances from the other monomers). A microscopic
state of the rubber band is therefore described by the set of angles

θ ≡ {θn|n = 1, 2, . . . , N}
describing the orientations of the monomers. [You can decide whether to define the
angles with respect to the orientation of the previous monomer, or according to a fixed
frame of reference. However, you must say which you’ve chosen!]

The rubber band (polymer) is used to suspend a mass M above the floor. One
end of the rubber band is attached to the ceiling, and the other end is attached to the
mass, so that the mass is hanging above the floor by the rubber band. For simplicity,
assume that the rubber band is weightless. You can ignore the mass of the monomers
and their kinetic energy.

The whole system is in thermal equilibrium at temperature T .

1. Calculate the energy of the system (polymer plus mass) for an arbitrary micro-
scopic state θ of the monomers (ignoring the kinetic energy).

2. Find an expression for the canonical partition function in terms of a single, one-
dimensional integral.

3. Find an expression for the average energy U .
4. For very high temperatures, find the leading term in an expansion of the average

energy U .



This page intentionally left blank 



20

Classical Ensembles: Grand
and Otherwise

To create man was a quaint and original idea, but to add the sheep was
tautology.

Mark Twain (Samuel Clemens)

Although the canonical ensemble is the work horse of classical statistical mechanics,
several other ensembles often prove convenient. The most important of these is the
‘grand canonical ensemble’, which will be discussed in this chapter. This discussion
will also serve as an introduction to the very important use of the quantum grand
canonical ensemble, which will play a prominent role in the theories of boson and
fermion fluids in Part IV.

20.1 Grand Canonical Ensemble

The physical situation described by the grand canonical ensemble is that of a system
that can exchange both energy and particles with a reservoir. As usual, we assume
that the reservoir is much larger than the system of interest, so that its properties are
not significantly affected by relatively small changes in its energy or particle number.
Note that the reservoir must have the same type (or types) of particle as the system
of interest, which was not a requirement of the reservoir for the canonical ensemble.

Because the system of interest and the reservoir are in equilibrium with respect
to both energy and particle number, they must have the same temperature T = TR

and chemical potential μ = μR. In thermodynamics, this situation would correspond
to the thermodynamic potential given by the Legendre transform with respect to
temperature and chemical potential.

U [T, μ] = U − TS − μN (20.1)

The function U [T, μ] is sometimes referred to as the ‘grand potential’. Since Legendre
transforms conserve information, the grand potential is another representation of
the fundamental relation and contains all thermodynamic information about the
system.
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For extensive systems, Euler’s equation, eq. (13.4), holds, and U [T, μ] has a direct
connection to the pressure.

U [T, μ] = U − TS − μN = −PV (20.2)

While the grand canonical ensemble is useful in classical statistical mechanics,
it turns out to be essential in quantum statistical mechanics, as we will see in
Chapters 26, 27, and 28. Since the basic idea is the same in both classical and quantum
statistical mechanics, it is convenient to see how the grand canonical ensemble works
in the classical case, without the added complexity of quantum mechanics.

20.2 Grand Canonical Probability Distribution

To describe a system that can exchange energy and particles with a reservoir, we must
greatly expand our description of a microscopic state. Both the microcanonical and
canonical ensembles for a system with N particles required only a 6N -dimensional
phase space to describe a microscopic state. When the particle number can vary, we
need a different 6N -dimensional phase space for each value of N . Since N can vary
from zero to the total number of particles in the reservoir—which we can take to be
infinite—this is a significant change.

To find the probability of a state in this expanded ensemble of an infinite number
of phase spaces, we return to the basic calculation of the probability distribution in a
composite system. Assume that the reservoir and the system of interest can exchange
both energy and particles with each other, but are completely isolated from the rest
of the universe. The total number of particles is NT = N + NR and the total energy
is ET = E + ER, where the subscripted R indicates properties of the reservoir.

The probability of the system of interest having N particles and energy E is given
by a generalization of eq. (19.10).

P (E,N) =
Ω(E, V,N)ΩR(ET − E, VR, NT − N)

ΩT (ET , VT , NT )
(20.3)

Following the same procedure as in Section 19.3, we take the logarithm of eq. (20.3)
and expand ln ΩR(ET − E, VR, NT − N) in powers of E/ET and N/NT .

lnP (E,N) = ln Ω(E, V,N) + ln ΩR(ET − E, VR, NT − N)

− ln ΩT (ET , VT , NT )

≈ ln Ω(E, V,N) + ln ΩR(ET , VR, NT )

+E
∂

∂ET
ln ΩR(ET , VR, NT )

+N
∂

∂NT
ln ΩR(ET , VR, NT )

− ln ΩR(ET , VT , NT ) (20.4)
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In eq. (20.4) we have neglected terms of higher order in E/ET and N/NT , since the
reservoir is assumed to be much bigger than the system of interest.

Recalling that

SR = kB ln ΩR(ET , VR, NT ) (20.5)

we see that we have already found the derivatives of ln Ω in eq. (8.12). Therefore,
βR = 1/kBTR is given by

βR ≡ ∂

∂ET
ln ΩR(ET , VR, NT ) (20.6)

Similarly, by comparison with eq. (8.30), we see that the chemical potential of the
reservoir is given by the other partial derivative in eq. (20.4).

−μRβR ≡ ∂

∂NT
ln ΩR(ET , VR, NT ) (20.7)

Since β = βR and μ = μR, and the quantities ET , NT , VR do not depend on either
E or N , we can combine ln ΩR(ET , VR, NT ) and ln ΩR(ET , VT , NT ) into a single value
denoted by − lnZ.

lnP (E,N) ≈ ln Ω(E, V,N) − βE + βμN − lnZ (20.8)

Exponentiating this equation gives us the grand canonical probability distribution for
E and N .

P (E,N) =
1
ZΩ(E, V,N) exp [−βE + βμN ] (20.9)

The normalization condition determines Z, which depends on both T = 1/kBβ
and μ (and, of course, V ).

Z =
∞∑

N=0

∫ ∞

0

dE Ω(E, V,N) exp [−βE + βμN ] (20.10)

The lower limit in the integral over the energy in eq. (20.10) has been taken to be
zero, which is the most common value. More generally it should be the lowest allowed
energy.

The normalization ‘constant’ Z is called the grand canonical partition function. It
is constant in the sense that it does not depend on E or N , although it does depend
on β and μ.

The grand canonical partition function can also be expressed as a Laplace trans-
form of the canonical partition function. Since eq. (19.18) gave the canonical partition
function as

Z(T, V,N) =
∫ ∞

0

dE Ω(E, V,N) exp(−βE)dE (20.11)
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we can rewrite eq. (20.10) as

Z(T, V, μ) =
∞∑

N=0

Z(T, V,N) exp [βμN ] (20.12)

20.3 Importance of the Grand Canonical Partition Function

The grand canonical partition function plays much the same role as the canonical par-
tition function. It is directly related to the grand canonical thermodynamic potential
U [T, μ]. To see this, consider the value of ln P (E,N) at its maximum. The location of
the maximum, as before, gives the equilibrium values of E = Eeq = U and N = Neq.
We can rewrite eq. (20.8) to solve for lnZ.

lnZ = ln Ω(Eeq, V,Neq) − βEeq + βμNeq − lnP (Eeq, Neq) (20.13)

We already know that the first three terms on the right of eq. (20.13) are proportional
to the size of the system. However, P (Eeq, Neq) will be proportional to

√
(Neq) and√

(Neq), so that lnP (Eeq, Neq) will only be of order lnEeq and lnNeq. For N ≈ 1020,
lnP (Eeq, Neq) is completely negligible, and we can discard it in eq. (20.13).

lnZ = ln Ω(E, V,N) − βE + βμN (20.14)

Since we know that the microcanonical entropy is given by

S = kB ln Ω (20.15)

we can rewrite eq. (20.14) as

lnZ = S/kB − βE + βμN (20.16)

or

lnZ = −β (E − TS − μN) = −βU [T, μ] (20.17)

If the system is extensive, Euler’s equation, eq. (13.4), holds, and

lnZ = −βU [T, μ] = βPV (20.18)

This equation gives us a convenient way to calculate the pressure as a function of T
and μ, as illustrated below for the classical ideal gas in eq. (20.21).

Eq. (20.18) is directly analogous to eq. (19.48). It provides a way to calculate the
fundamental relation, and we can immediately invoke everything we learned in Part II
about how to use thermodynamic potentials to calculate thermodynamic properties.
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20.4 Z(T, V, μ) for the Ideal Gas

In Section 19.10.1 we derived the partition function for the classical ideal gas, with
the result given in eq. (19.62).

Z =
1

h3NN !
(2πmkBT )3N/2

V N

Inserting this equation into eq. (20.12) for the grand canonical partition function, we
find

Z(T, V, μ) =
∞∑

N=0

1
h3NN !

(2πmkBT )3N/2
V N exp [βμN ] (20.19)

=
∞∑

N=0

1
N !

(
(2πmkBT )3/2

h3
V eβμ

)N

= exp
(
(2πmkBT )3/2

h−3V eβμ
)

Taking the logarithm of eq. (20.19) gives us the grand canonical thermodynamic
potential for the classical ideal gas.

−βU [T, μ] = (2πmkBT )3/2
h−3V eβμ = βPV (20.20)

The last equality is, of course, true only because the ideal gas is extensive. Note that
the pressure depends only on β and μ, and can be obtained by dividing out the product
βV in eq. (20.20).

P = kBT (2πmkBT )3/2
h−3eβμ (20.21)

20.5 Summary of the Most Important Ensembles

The three ensembles that we have discussed so far are the most important.

The microcanonical ensemble fixes the energy, volume, and number of particles.
The formula for the entropy of an isolated system is

S = kB ln Ω(E, V,N) (20.22)

where

Ω(E, V,N) =
1

h3NN !

∫
dq

∫
dp δ(E − H(p, q)) (20.23)

The origin of these equations is Boltzmann’s definition of the entropy of a composite
system in terms of the logarithm of the probability distribution. Eq. (20.22) can also
be written in the form

Ω(E, V,N) = exp(S(E, V,N)/kB) (20.24)
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The canonical ensemble describes a system in equilibrium with a thermal
reservoir. The canonical partition function is given by

Z =
∫

dE Ω(E, V,N) exp(−βE) (20.25)

and is related to the Helmholtz free energy F by

Z = exp(−βF ) (20.26)

The grand canonical ensemble describes a system that can exchange both energy
and particles with a reservoir. The grand canonical partition function is given by

Z =
∞∑

N=0

∫ ∞

o

dE Ω(E, V,N) exp [−βE + βμN ] (20.27)

and its relationship to U [T, μ] is

Z = exp(−βU [T, μ]) = exp(βPV ) (20.28)

where the last equality is valid only for extensive systems.

20.6 Other Classical Ensembles

For every thermodynamic potential there is a corresponding ensemble in statistical
mechanics. Every Legendre transform in thermodynamics corresponds to a Laplace
transform in statistical mechanics. In each case, the logarithm of a partition function
produces a thermodynamic potential. The only feature that is slightly different is found
in the grand canonical partition function, for which the Laplace transform takes the
form of a sum instead of an integral. None of these transforms should present any
difficulties, since they are all derived using the same principles.

20.7 Problems

Problem 20.1

A non-extensive thermodynamic system

Consider a classical gas of N weakly interacting atoms of mass m, enclosed in a
container of volume V and surface area A.

The interactions between the atoms are so weak that they may be neglected
(ideal gas approximation). However, the interaction of the atoms with the walls of
the container may NOT be neglected. Some fraction of the atoms are adsorbed onto
the walls of the container in equilibrium. Your job will be to calculate the average
number N ′ of adsorbed atoms on the walls.
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A simple model for the atoms adsorbed onto the walls is to treat them as a two-
dimensional ideal gas. The energy of an adsorbed atom is taken to be

ε(�p) =
|�p|2
2m

− εo

where �p is the two-dimensional momentum and εo is a known parameter that describes
the energy of adsorption.

The entire system is in equilibrium and in thermal contact with a heat reservoir
at temperature T .

1. What is the classical partition function of the adsorbed atoms if N ′ of them are
adsorbed onto the walls of the container?

2. What is the chemical potential μS of the atoms adsorbed on the surface?
3. What is the chemical potential μV of the N − N ′ atoms in the volume of the

container?
4. When the atoms in the volume and those adsorbed on the walls are in equilibrium,

what is the average number of atoms adsorbed as a function of the temperature?
5. What are the high- and low-temperature limits of the ratio of the number of

adsorbed atoms to the total number of atoms?
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Irreversibility

It would be much more impressive if it flowed the other way.
Oscar Wilde, on seeing the Niagara Falls

21.1 What Needs to be Explained?

The first thing we must establish is the meaning of the term ‘irreversibility’. This is
not quite as trivial as it might seem.1 The irreversible behavior I will try to explain
is that which is observed. Every day we see that time runs in only one direction in
the real world. If I drop my keys, they fall to the floor and stay there; keys lying on
the floor do not suddenly jump into my hand. This asymmetry of time has seemed
to many as being incompatible with the time-reversal invariance of the fundamental
equations of both classical and quantum physics.2 This is the issue addressed in this
chapter.

As with the development of statistical mechanics in general, the explanation of
irreversibility given here is based on large number of particles in a macroscopic system
for which we have very limited information about the microscopic state. As in the rest
of the book, this leads us to describe a macroscopic system on the basis of probability
theory.

We will present an explanation of irreversibility using the example of the free
expansion of a classical ideal gas. The microscopic equations of motion for this
problem are time-reversal invariant, but the macroscopic behavior will nevertheless
turn out to be irreversible. Because of the simplicity of the example we will be able
to carry out every mathematical step exactly, so that the argument can be analyzed
completely.3

1This chapter is based on an earlier paper by the author: R. H. Swendsen, ‘Explaining Irreversibility’,
Am. J. Phys., 76, 643–648 (2008).

2The history of the debate on the origins of irreversibility is fascinating (and continuing), but we will not
have space to delve into it. There are many books on this topic that the interested student might consult.

3The mathematical analysis we use was first derived by H. L. Frisch, ‘An approach to equilibrium,’ Phys.
Rev. 109, 22–29 (1958).
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21.2 Trivial Form of Irreversibility

The irreversibility observed in daily life must be distinguished from a trivial form of
irreversibility that appears only in infinite systems.

Consider a particle moving in empty space. At some initial time it is observed to
be located in some finite region of space. Since the particle is moving, it will eventually
leave this region. If space is infinite, it will not return. This is, technically, irreversible
behavior, but of a trivial kind.

This trivial form of irreversibility is real, and occurs in the radiation of light from
a star. It is quite general in infinite systems, whether classical or quantum. An open
system also displays this trivial form of irreversibility, since it is really just a piece of
an infinite system.

However, we would like to separate this trivial irreversibility from the non-trivial
irreversibility that we experience every day. Therefore, we will restrict the discussion
to an isolated, finite system.

21.3 Boltzmann’s H-Theorem

The history of the debate on irreversibility has been closely associated with responses
to Boltzmann’s famous H-theorem, in which he claimed to explain irreversibility.
Although objections were aimed at Boltzmann’s equations rather than the apparent
paradox itself, discussing them can help clarify the problem.

Boltzmann derived an equation for the time-derivative of the distribution of
atoms in a six-dimensional space of positions and momenta by approximating the
number of collisions between atoms (Stosszahlansatz ). This approximation had the
effect of replacing the true macroscopic dynamics by a process that included random
perturbations of the particle trajectories. Within the limits of his approximation,
Boltzmann showed that a particular quantity that he called ‘H’ could not increase
with time.

The fact that Boltzmann used an approximation—and an essential one—in deriv-
ing his result meant that his derivation could not be regarded as a proof. The
arguments began soon after his publication appeared, and have continued to the
present day.

21.4 Loschmidt’s Umkehreinwand

The first objection came from Boltzmann’s friend, Johann Josef Loschmidt (Austrian
physicist, 1821–1895), who noted that if all momenta in an isolated system were
reversed, the system would retrace its trajectory. If Boltzmann’s H-function had been
decreasing at the moment of reversal, its value after time-reversal must increase.
Loschmidt argued on this basis that Boltzmann’s conclusions could not be correct,
and his argument is usually referred to by the German term Umkehreinwand.

Loschmidt’s argument is very close to the central paradox. If every microscopic
state that approaches equilibrium corresponds to a time-reversed state that moves
away from equilibrium, should they not be equally probable?
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21.5 Zermelo’s Wiederkehreinwand

Ernst Zermelo (German mathematician, 1871–1953) was a prominent mathematician,
who raised a different objection. He cited a recently derived theorem by Jules Henri
Poincaré (French mathematician and physicist, 1854–1912) that proved that any
isolated classical system must exhibit quasi-periodic behavior; that is, the system must
return repeatedly to points in phase space that are arbitrarily close to its starting
point. Zermelo claimed that Poincaré’s theorem is incompatible with Boltzmann’s
H-theorem, which predicts that the system will never leave equilibrium. Zermelo’s
argument is referred to by the German term Wiederkehreinwand.

21.6 Free Expansion of a Classical Ideal Gas

In this section we will present an exact analysis of a simple model that exhibits
irreversible behavior. Since the model is governed by time-reversal-invariant equations
of motion, this will serve as a demonstration of the compatibility of irreversible
macroscopic behavior and time-reversal invariance.

Consider an ideal gas of N particles in a volume V . Isolate the gas from the rest
of the universe and assume that the walls of the box are perfectly reflecting. Initially,
the gas is confined to a smaller volume Vo by an inner wall. At time t = 0, the inner
wall is removed.

For convenience, let the box be rectangular and align the coordinate axes with
its sides. The inner wall that initially confines the gas to a subvolume Vo is assumed
to be perpendicular to the x-direction and located at x = Lo. The length of the box
in the x-direction is L. The dependence of the probability distribution on the y- and
z-coordinates does not change with time, so that we can treat it as a one-dimensional
problem.

At time t = 0, the confining wall at Lo is removed and the particles are free to move
throughout the box. Following Frisch’s 1958 paper, we will eliminate the difficulties
involved in describing collisions with the walls at x = 0 and x = L by mapping the
problem onto a box of length 2L with periodic boundary conditions. When a particle
bounces off a wall in the original system, it corresponds to a particle passing between
the positive and negative sides of the box without change of momentum. The mapping
from the periodic system to the original system is then simply xj → |xj |.

The key assumption is that the initial microscopic state must be described by
a probability distribution. Assume that before the inner wall is removed, the initial
positions of the particles are uniformly distributed in Vo, and the momenta have
a probability distribution ho(p). This probability distribution is assumed to be time-
reversal invariant, ho (−pj) = ho (pj), so that there is no time-asymmetry in the initial
conditions. Since we are assuming that the positions and momenta of different particles
are initially independent, we can write the total probability distribution as

fN ({xj , pj |j = 1 . . . N} , t = 0) =
N∏

j=1

f (xj , pj , t = 0) =
N∏

j=1

go (xj) ho (pj) (21.1)
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–L

p

–Lo Lo0

0

L
x

Fig. 21.1 The initial probability distribution at t = 0.

where

go (xj) =
{

1/Lo −L0 < x < L0

0 |x| ≥ L0
(21.2)

This initial probability distribution for the periodic system is shown schematically in
Fig. 21.1.

Since the particle probabilities are independent, we can restrict our attention to
the distribution function of a single particle. The periodic boundary conditions then
allow us to Fourier transform the initial conditions to obtain

g(x) = go +
∞∑

n=1

gn cos
(πn

L
x
)

(21.3)

where no sine terms enter because of the symmetry of the initial conditions in the
expanded representation with period 2L.

Using the standard procedure of multiplying by cos (πn′x/L) and integrating to
obtain the coefficients in eq.(21.3), we find

∫ L

−L

g(x) cos
(

πn′

L
x

)
dx

=
∫ L

−L

go cos
(

πn′

L
x

)
dx +

∞∑
n=1

gn

∫ L

−L

cos
(πn

L
x
)

cos
(

πn′

L
x

)
dx (21.4)

For n′ = 0, this gives us

go =
1
L

, (21.5)
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and for n′ ≥ 1

gn′ =
2

n′πLo
sin
(

n′π
L

Lo

)
(21.6)

The time development for a given momentum is now simple.

f (x, p, t) = f
(
x −
( p

m

)
t, p, 0

)

= ho (p)

[
go +

∞∑
n=1

gn cos
(nπ

L

(
x −
( p

m

)
t
))]

(21.7)

Fig. 21.2 shows the probability distribution at a time t > 0. The shaded areas,
representing non-zero probabilities, tilt to the right. As time goes on, the shaded
areas become increasingly flatter and closer together.

To find an explicit solution for a special case, assume that the initial probability
distribution for the momentum is given by the Maxwell-Boltzmann distribution,

ho (p) =
(

β

2πm

)1/2

exp
[
−β

(
p2

2m

)]
(21.8)

where T is the temperature, and β = 1/kBT . The assumption of a Maxwell–Boltzmann
distribution is not essential, but it provides an explicit example of how the approach
to equilibrium comes about.

L–L Lo–Lo 0
x

p

0

Fig. 21.2 The probability distribution for t > 0.
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Inserting eq. (21.8) in eq. (21.7), we can integrate over the momenta to calculate
the local probability density as a function of time.

g (x, t) =
∫ ∞

−∞
f(x, t) dp

=
∫ ∞

−∞
ho (p) L−1dp

+
∞∑

n=1

gn

∫ ∞

−∞
ho (p) cos

(nπ

L

(
x −
( p

m

)
t
))

dp (21.9)

The first integral is trivial, since ho (p) is normalized.∫ ∞

−∞
ho (p) dp = 1 (21.10)

The integrals in the sum are rather tedious, but not particularly difficult when you
use the identity cos θ = 1

2

(
eiθ + e−iθ

)
to write them in the form

∫ ∞

−∞
exp
[
−β

p2

2m
± nπ

L
i
p

m
t

]
dp (21.11)

and complete the square in the exponent. The result is

g (x, t) = L−1 +
2

πLo

∞∑
n=1

1
n

sin
(nπ

L
Lo

)
cos
(nπ

L
x
)

exp
[−λ2

nt2
]

(21.12)

where

λ2
n =

n2π2

2mL2β
=

n2π2

2mL2
kBT (21.13)

Note that since the temperature is related to the one-dimensional root-mean-square
velocity by

1
2
kBT =

1
2m

〈
p2
〉

=
m

2
〈
v2
〉

=
m

2
v2

rms (21.14)

the coefficients λn can be written as

λ2
n =

n2π2

2L2
v2

rms (21.15)

Eq. (21.12) can also be expressed in terms of the characteristic time for a particle
traveling with the speed vrms to cross the box.

τ =
L

vrms
(21.16)
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In terms of τ , the time-dependent local probability density becomes

g (x, t) = L−1

[
1 +

L

Lo

∞∑
n=1

(
2

nπ

)
sin
(nπ

L
Lo

)
cos
(nπ

L
x
)

exp
[
−
(

π2n2

2

)(
t2

τ2

)]]

(21.17)
Since ∣∣∣∣

(
2

nπ

)
sin
(nπ

L
Lo

)
cos
(nπ

L
x
)∣∣∣∣ ≤ 2

nπ
(21.18)

for all x, the sum converges rapidly for t > 0. At t = τ , the n-th term in the sum is
less than

(
2

nπ

)
exp
[
−
(

π2

2

)
n2
]
, and even the leading non-constant term has a relative

size of less than 0.005
(

L
Lo

)
. The rapidity of convergence is striking. The inclusion of

interactions in the model would actually slow down the approach to equilibrium.
It is also possible to calculate the energy density as a function of position and time

by including a factor of p2/2m in the integral over the momentum.

U (x, t) =
∫ ∞

−∞
f (x, p, t)

(
p2

2m

)
dp

=
∫ ∞

−∞
ho (p)

(
p2

2m

)
L−1dp

+
∞∑

n=1

gn

∫ ∞

−∞
ho (p)

(
p2

2m

)
cos
(nπ

L

(
x −
( p

m

)
t
))

dp (21.19)

The integrals are even more tedious than those in eq. (21.9), but again not particularly
difficult.

U (x, t) =
1

2Lβ
−

∞∑
n=1

(
n2π2t2 − L2mβ

L2Lomnπβ2

)

sin
(nπ

L
Lo

)
cos
(nπ

L
x
)

exp
[
−
(

π2n2t2

2τ2

)]
(21.20)

After the internal wall is removed, the energy distribution is not uniform and not
proportional to the particle density, since the faster particles move more rapidly into
the region that was originally vacuum. However, the energy density converges rapidly
to the expected constant, 1/2Lβ = 1

2
kBT/L, as t → ∞.

21.7 Zermelo’s Wiederkehreinwand Revisited

We have now established that that the particle density and energy density both go to
equilibrium. This leaves the question of reconciling the approach to equilibrium with
Poincaré recurrences. Fortunately, it is easy to see how quasi-periodic behavior can
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arise in the ideal gas model, without contradicting the approach to equilibrium. To do
this, it helps to have an intuitive picture of how Poincaré cycles occur.

First consider two particles with speeds v1 and v2. They will each return to their
original states with periods τ1 = 2L/v1 and τ2 = 2L/v2, respectively. In general, the
ratio τ1/τ2 will be irrational, but it can be approximated to arbitrary accuracy by
a rational number, τ1/τ2 ≈ n1/n2, where n1 and n2 are sufficiently large integers.
Therefore, after a time τ1,2 = n2τ1 ≈ n1τ2, both particles will return to positions and
velocities arbitrarily close their initial states .

Now add a third particle with speed v3 and period τ3 = 2L/v3. A rational
approximation τ1,2/τ3 ≈ n1,2/n3, will give us an approximate recurrence after a time
τ1,2,3 = n1,2τ3 ≈ n3τ1,2 ≈ n3n2τ1. Since n2 and n3 will usually be large numbers, τ1,2,3

will usually be a long time.
If we repeat this procedure for 1023 particles, we will arrive (with probability one)

at a recurrence time that would be enormous even in comparison to the age of the
universe. It might naturally be said that we are not interested in such extremely long
times, but it is interesting to note that eqs. (21.17) and (21.20) do not exhibit the
quasi-periodic behavior that Poincaré recurrence might seem to require.

The resolution of the apparent contradiction lies in our lack of knowledge of the
exact initial velocities and the extreme sensitivity of the Poincaré recurrence time to
tiny changes in initial velocities. Even with far more detailed information than we are
ever going to obtain in a real experiment, we would not be able predict a Poincaré
recurrence with an uncertainty of less than many ages of the universe.

Poincaré recurrences are included in the exact solution for the free expansion of an
ideal gas. However, since we cannot predict them, they appear as extremely rare large
fluctuations. Since such large fluctuations are always possible in equilibrium, there is
no contradiction between observed irreversible behavior and Poincaré recurrences.

21.8 Loschmidt’s Umkehreinwand Revisited

Loschmidt’s Umkehreinwand was directed against Boltzmann’s equation, which was
not time-reversal invariant. However, the exact solution to the free expansion of an
ideal gas retains the time-reversal properties of the microscopic equations. If we reverse
all velocities in the model some time after the inner wall is removed, the particles return
to their original positions.

Under normal conditions, the reversal of molecular velocities is experimentally
difficult, to say the least. However, the reversal of spin precession can be accomplished
and is fundamental to magnetic resonance imaging. It is known as the spin-echo effect.
After an initial magnetic pulse aligns the spins in a sample, interactions between the
spins and inhomogeneities in the sample lead to decoherence and a decay of this
magnetization. If no further action is taken, the signal will not return. However, if a
second magnetic pulse is used to rotate the spins by 180◦ at a time t after the first
pulse, it effectively reverses the direction of precession of the spins. The spins realign
(or ‘refocus’) after a total time 2t after the initial pulse, and the magnetization appears
again.
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The reversal of the time-development of an ‘irreversible’ process is therefore not a
flaw in the free-expansion model, but a reflection of the reality that such experiments
can be carried out.

21.9 What is ‘Equilibrium’?

An interesting feature of the exact solution to the free-expansion model can be seen in
Fig. 21.2. Even though the shaded regions, indicating non-zero probabilities, become
progressively thinner and closer together, the local probability density at any point
along the trajectory of the system remains constant. This is consistent with Liouville’s
theorem that the total time derivative of the probability distribution vanishes.4

This property of all isolated Hamiltonian systems has caused difficulties for those
who would like to define equilibrium in terms of a smooth distribution in phase space.
Although we assumed that our model experiment started with a canonical probability
distribution, it will certainly never evolve to one.

I believe that the difficulty is a confusion about the direction of inference. It
has been amply demonstrated that a canonical distribution accurately describes an
equilibrium state. However, that does not imply that a system in equilibrium can only
be described by a canonical distribution. The probability distribution for our model
at long times will give the same macroscopic predictions as the canonical distribution,
even though the two distributions are different.

21.10 Entropy

Liouville’s theorem has also caused difficulties for the traditional textbook definition
of the entropy as the logarithm of a volume in phase space. The theorem requires
that this volume remain constant, so the traditional expression for the entropy cannot
increase in an isolated system.

This seems to violate the Second Law, but it is correct—in a certain sense. The
traditional definition of entropy is related to the total information we have about the
system—not the thermodynamic information about the current and future behavior of
the system. The information that the system was initially confined to a smaller volume
is contained in the layered structure of the probability density shown in Fig. 21.2.
Since that information does not change, the traditional entropy does not change. The
apparent violation of the Second Law arises because the traditional entropy does not
correspond to the thermodynamic entropy.

If we use Boltzmann’s definition of the thermodynamic entropy in terms of the
probability of a macroscopic state, we obtain an expression that increases with time
as expected for the thermodynamic entropy.

The specific form of the entropy depends on what we are measuring in the
experiment. Since we are interested in the time development of the system as it
approaches a uniform state, it would be reasonable to observe its properties as a
function of position. Let us divide the system into M subsystems, each with length

4See Section 19.5 for a derivation of the Liouville theorem.
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ΔL = L/M , and measure the energy and density in each subsystem. For convenience,
assume that the first m subsystems were inside the inner wall before the free expansion
began, so that Lo = mL/M .

If M is large, we can assume that the energy and density are uniform across a
subsystem. The number of particles in the j-th subsystem, Nj(t), is given by ΔL
times the expression in eq. (21.12), and the energy in the j-th subsystem, Ej(t), is
given by ΔL times the expression in eq.(21.20)

If the subsystems are large enough that 1/
√

Nj(t) is much smaller than the relative
error in experimental measurements, they can be regarded as macroscopic systems.
Their individual entropies might then be well approximated by the equilibrium entropy
of a one-dimensional, classical ideal gas,

S(Ej(t), L/M,Nj(t)) = Nj(t)kBT

[
ln
(

L/M

Nj(t)

)
+

1
2

ln
(

Ej(t)
Nj(t)

)
+ X

]
(21.21)

where X is the usual constant. The total time-dependent entropy of the whole system
is then given by

S({Ej(t)}, L,Nj(t),M) =
M∑

j=1

S (Ej(t), L/M,Nj(t)) (21.22)

This expression has the properties that at t = 0, it takes on the value of the initial
entropy before the inner wall was removed,

S({Ej(0)}, L,Nj(0),M) = S(E,Lo, N) (21.23)

and as t → ∞, it goes rapidly to the equilibrium entropy of the full system.

lim
t→∞S({Ej(t)}, L,Nj(t),M) = S(E,L,N) (21.24)

These two properties are independent of the number M of subsystems that are
observed.

21.11 Interacting Particles

The explanation of irreversible phenomena given here is, of course, not complete. The
apparent conflict between microscopic and macroscopic laws has been resolved, but
we have ignored the effects of interactions. However, now that it is clear that there
is no real conflict between time-reversal-invariant microscopic laws and macroscopic
irreversibility, it should be sufficient to demonstrate the equilibration of the momentum
distribution by molecular dynamics computer simulations that are generalizations of
those carried out in the assignments in Chapter 19.
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Quantum Ensembles

I think I can safely say that nobody understands quantum mechanics.
Richard Feynman, in The Character of Physical Law

In Part IV of this book we will extend the application of statistical ideas to quantum
mechanical systems. Most of the results we will derive have counterparts in classical
statistical mechanics, but some important features will be quite new.

The differences between classical and quantum statistical mechanics are all based
on the differing concepts of a microscopic ‘state’. While the classical microscopic state
(specified by a point in phase space) determines the exact position and momentum
of every particle, the quantum mechanical state determines neither; quantum states
can only provide probability distributions for observable quantities. This feature has
the important consequence that quantum statistical mechanics involves two different
kinds of probability, while classical statistical mechanics involves only one.

Classical and quantum statistical mechanics both require the assignment of proba-
bilities to the possible microscopic states of a system. The calculation of all quantities
involves averages over such probability distributions in both theories.

Quantum statistical mechanics further requires averages over the probability dis-
tributions that are obtained from each individual microscopic state.

We will begin this chapter by recalling the basic equations of quantum mechanics,
assuming that the reader is already familiar with the material. If any part of the
discussion seems mysterious, it would be advisable to consult a textbook on quantum
mechanics.

After a review of the basic ideas we will discuss the special features that distinguish
quantum statistical mechanics from the classical theory.

Subsequent chapters will develop the theory of quantum statistical mechanics and
apply it to models that demonstrate the significant differences between the predictions
of quantum and classical statistical mechanics. We will show that even simple harmonic
oscillators and ideal gases have dramatically different properties in quantum and
classical theories. Since the real world ultimately obeys quantum mechanics, quantum
statistical mechanics is essential to obtain agreement with experimental results.
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22.1 Basic Quantum Mechanics

The most fundamental characteristic of quantum mechanics is that the microscopic
state of a system is described by a wave function, rather than a point in phase space.
For a simple, one-particle system, the wave function can be represented by a complex
function of space and time, ψ (�r, t), which contains all available information about the
particle.

Even if the wave function is known exactly, the result of a measurement of the
position of the particle can only be predicted in terms of probabilities. For example,
the absolute value of the square of the wave function, |ψ (�r, t) |2, gives the probability
density for the result of a measurement of the position of a particle. (After the
measurement, of course, the wave function of the particle would change.) Only the
average position of the particle and the various moments of its probability distribution
can be calculated from the wave function.

The momentum, �p, is represented by a vector operator rather than a real vector.

�p = −i��∇ = −i�

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
(22.1)

As is the case for the position of the particle, the momentum does not have a fixed
value. The expectation value of the momentum is given by an integral over the wave
function. This can be denoted as

〈ψ|�p|ψ〉 = −i�

∫
ψ∗ (�r, t) �∇ψ (�r, t) d3r (22.2)

In eq. (22.2), ψ∗ denotes the complex conjugate of the function ψ, and we have
introduced the ‘bra’, 〈ψ| = ψ∗ (�r, t), and ‘ket’, |ψ〉 = ψ (�r, t) notation.

The kinetic and potential energy are represented by a Hamiltonian.

H (�r, �p) = H
(
�r,−i��∇

)
=

�p · �p
2m

+ V (�r) =
−�

2

2m
∇2 + V (�r) (22.3)

In this equation,

∇2 = �∇ · �∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(22.4)

The wave function must satisfy the Schrödinger equation.

i�
∂

∂t
ψ (�r, t) = H

(
�r,−i��∇

)
ψ (�r, t) (22.5)

22.2 Energy Eigenstates

There are certain special quantum states that can be written as a product of a function
of position times a function of time.

ψ (�r, t) = ψ (�r) f(t) (22.6)
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For these states, the Schrödinger equation can be written in a form that separates the
functions of time and space.

i�
1

f(t)
∂f(t)

∂t
=

1
ψ (�r)

H
(
�r,−i��∇

)
ψ (�r) (22.7)

Since the left side of eq. (22.7) depends only on time and the right side depends
only on space, they must both be equal to a constant, which we will denote as E. For
these special states, the Schrödinger equation separates into two equations:

∂f(t)
∂t

=
−iE

�
f(t) (22.8)

and

H
(
�r,−i��∇

)
ψ (�r) = Eψ (�r) (22.9)

Since the expectation value of H is just

〈H〉 = E (22.10)

we can identify E as the energy of the state.
Eq. (22.8) can be easily solved as a function of time.

f(t) = exp
(
−i

E

�
t

)
(22.11)

In general, eq. (22.9) only has solutions for particular values of E, which are the
only observable values of the energy. These special values are known as energy eigen-
values, and the corresponding wave functions are known as eigenfunctions. Eq. (22.9) is
called an eigenvalue equation. The eigenfunctions and eigenvalues can be identified by
a quantum ‘number’ n, which is really a set of d numbers that describe the eigenstate
for a wave function in a d-dimensional system.

Including the quantum number explicitly, the eigenvalue equation can be written
as

Hψn (�r) = Enψn (�r) (22.12)

or

H|n〉 = En|n〉 (22.13)

where we have suppressed the explicit dependence on �r in the second form of the
eigenvalue equation. En is called the energy eigenvalue. It is possible for distinct
eigenstates to have the same energy eigenvalue, in which case the states are called
‘degenerate’.

The time-dependence of an eigenstate therefore has the form

ψn (�r, t) = ψn (�r) exp
(
− iE

�
t

)
(22.14)
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Since the expectation value of any operator is constant in time for eigenstates, they
are also called ‘stationary states’.

It is standard procedure to normalize the eigenfunctions.

〈n|n〉 =
∫

ψ∗
n (�r, t) ψn (�r, t) d3r = 1 (22.15)

In this equation, we have again used the ‘bra-ket’ notation (ψn (�r, t) = |n〉).
It is easily proved that for En �= Em, 〈n|m〉 = 0. It is also straightforward to chose

eigenfunctions in such a way that for n �= m, 〈n|m〉 = 0, even when En = Em. These
properties can be summarized using the Kronecker delta.

〈n|m〉 = δn,m (22.16)

22.2.1 Expansion of a General Wave Function

A very important theorem is that any wave function can be expanded in the set of all
eigenfunctions.

ψ (�r) =
∑

n

cnψn (�r) (22.17)

This can also be expressed more compactly using the ket notation.

|ψ〉 =
∑

n

cn|n〉 (22.18)

The coefficients cn are complex numbers that can be calculated from the wave
functions.

〈m|ψ〉 =
∑

n

cn〈m|n〉 =
∑

n

cnδm,n = cm (22.19)

22.2.2 Magnitudes of Coefficients

Since wave functions are assumed to be normalized, there is a sum rule for the cns.

1 = 〈ψ|ψ〉 =
∑

n

∑
m

c∗ncm〈ψn|ψm〉 =
∑

n

∑
m

c∗ncmδn,m =
∑

n

|cn|2 (22.20)

The expectation value of the energy can also be expressed in terms of the coeffi-
cients {cn} and the energy eigenvalues.

〈ψ|H|ψ〉 =
∑
m

∑
n

c∗mcn〈m|H|n〉 (22.21)

=
∑
m

∑
n

c∗mcn〈m|En|n〉
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=
∑
m

∑
n

Enc∗mcnδm, n

=
∑

n

En|cn|2

Since the sum of |cn|2 is 1, and the expectation value of the energy is given by the
weighted sum in eq. (22.21), it is natural to interpret |cn|2 as the probability that a
measurement of the energy will put the system into the eigenstate |n〉.

It is important to note that if a system is in a general state, |ψ〉, given by eq. (22.18),
it is not in an eigenstate unless |cn| = 1 for some value of n. |cn|2 is the probability
that the system would be found in the state |n〉 only after a measurement has been
made that put the system into an eigenstate. Without such a measurement, the
probability that the system is in an eigenstate is zero.

22.2.3 Phases of Coefficients

Since the time-dependence of the eigenfunctions is known, the time-dependence of an
arbitrary wave function can be written in terms of the expansion in eigenfunctions,

ψ (�r, t) =
∑

n

cn exp
(
−i

En

�
t

)
ψn (�r) (22.22)

or more compactly,

|ψ, t〉 =
∑

n

cn exp
(
−i

En

�
t

)
|n〉 (22.23)

Eqs. (22.22) or (22.23) show that the time development of an arbitrary quantum
state can be described by the changing phases of the expansion coefficients. They
also show that since eigenstates with different energies have phases that change at
different rates, the relative phases between any two states, given by (En − Em)t/�,
sweeps uniformly through all angles. This property suggests that a model probability
distribution in equilibrium should be uniform in the phases. Indeed, if a probability
distribution is not uniform in the phases, it will not be time-independent.

22.3 Many-Body Systems

Quantum systems that contain many particles (‘many-body systems’ in common
terminology) are also described by a single wave function, but one that is a function of
the coordinates of every particle in the system: ψ ({�rj |j = 1, . . . , N}). The Hamiltonian
naturally depends on all the coordinates and all the gradients.

H = H
(
{�rj ,−i��∇j |j = 1, . . . , N}

)
(22.24)
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We can again find eigenstates of the Hamiltonian (at least in principle), but the
quantum ‘number’ n is now a set of 3N numbers that are needed to describe the
many-body wave function.

A general many-body wave function can also be expanded as a linear combination
of eigenstates, as in eq. (22.18), and the time-development of the many-body wave
function can still be represented by eq. (22.23), with the appropriate interpretation of
n as the set of many-body quantum numbers.

As in the single-particle case, the square of the absolute value of a coefficient in the
expansion of a many-body wave function, |cn|2, can be interpreted as the probability
that a measurement that put the system in an eigenstate would put it in eigenstate
n. However, such a measurement is never carried out on a macroscopic system—
which is never in an energy eigenstate!

22.4 Two Types of Probability

In Part I of this book we introduced the use of probabilities to describe our ignorance
of the exact microscopic state of a many-body system. Switching from classical to
quantum mechanics, we find a corresponding ignorance of the exact microscopic
wave function. Again we need to construct a model probability distribution for the
microscopic states to describe the behavior of a macroscopic system.

However, as we have seen above, the properties of a quantum system are still
only given by probability distributions even if we know the wave function. Therefore,
in quantum statistical mechanics we need to deal with two kinds of probability
distributions: one for the microscopic states, and a second for the observable properties.

22.4.1 Model Probabilities for Quantum Systems

We will denote a model probability distribution for the many-body wave functions as
Pψ. The calculation of the expectation value (average value) of any operator A must
include averages over probability distribution of the wave functions and the probability
distribution of each quantum state.

〈A〉 =
∫

ψ

Pψ〈ψ|A|ψ〉 (22.25)

We have written the average over Pψ as an integral because there is a continuum of
wave functions.

We can write eq. (22.25) in a more convenient form by expressing the wave function
in terms of an expansion in eigenfunctions, as in eq. (22.18). Since the expansion
coefficients completely specify the wave function, we can express the probability
distribution in terms of the coefficients.

Pψ = P{cn} (22.26)
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The average of A then becomes

〈A〉 =
∫
{cn}

∑
n

∑
m

P{cn}c∗mcn〈m|A|n〉 (22.27)

The integral in eq. (22.27) is over all values of all coefficients, subject to the normal-
ization condition in eq. (22.20).

Since the phases play an important role in specifying the time dependence in
quantum mechanics, it will be useful to modify eq. (22.27) to exhibit them explicitly.
If we write the coefficients as

cn = |cn| exp(iφn) (22.28)

we can rewrite eq. (22.27) as

〈A〉 =
∫
{|cn|}

∫
{φn}

∑
n

∑
m

P{cn}|cm||cn| exp(−iφm + iφn)〈m|A|n〉 (22.29)

Since we have introduced the phases explicitly into eq. (22.29), we have also separated
the integrals over the coefficients into integrals over their magnitudes and their phases.

22.4.2 Phase Symmetry in Equilibrium

Eq. (22.29) gives a formal expression for the macroscopic average of any property in
any macroscopic system. However, since we are primarily interested in macroscopic
equilibrium states, we can greatly simplify the problem by making an assumption
about the probability distribution of the phases.

As the wave function in eq. (22.23) develops in time, the relative phases between
any two eigenstates (with different energy eigenvalues) sweep out all angles. Since the
macroscopic equilibrium state is time-independent, it would seem reasonable to assume
that the equilibrium probability distribution of phase angles should be uniform and
the phases independent. With this assumption, P{cn} = P{|cn|}, and we can integrate
over the phase angles when n �= m∫ 2π

0

dφm

∫ 2π

0

dφn exp(−iφm + iφn) = 0 (22.30)

or n = m ∫ 2π

0

dφn exp(−iφn + iφn) =
∫ 2π

0

dφn = 2π (22.31)

Inserting eqs. (22.30) and (22.31) into eq. (22.29) we find

〈A〉 = 2π

∫
{|cn|}

∑
n

P{|cn|}|cn|2〈n|A|n〉 (22.32)
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or

〈A〉 =
∑

n

[
2π

∫
{|cn|}

P{|cn|}|cn|2
]
〈n|A|n〉 (22.33)

Eq. (22.33) has a particularly interesting form. If we define a set of values {Pn},
where

Pn = 2π

∫
{|cn|}

P{|cn|}|cn|2 (22.34)

we can rewrite the equation for 〈A〉 in a very useful form.

〈A〉 =
∑

n

Pn〈n|A|n〉 (22.35)

The only quantum averages that appear in eq. (22.35) are of the form 〈n|A|n〉,
so every term is an average over a single quantum eigenstate. For the purposes of
calculating the macroscopic properties of a macroscopic system in equilibrium, each
eigenstate contributes separately.

The Pns have two useful properties. First, since Pψ is a probability distribution,
Pψ ≥ 0 for all ψ. From eq. (22.34), it follows that Pn ≥ 0 for all n. Next, since
the average of a constant must be the value of the constant, eq. (22.35) gives us a
normalization condition on the Pns.

1 = 〈1〉 =
∑

n

Pn〈n|1|n〉 =
∑

n

Pn (22.36)

This equation also implies that Pn ≤ 1.

Since 0 ≤ Pn ≤ 1 for all n, and from eq. (22.36) the sum of all Pns is unity, the
Pn’s fairly beg to be regarded as probabilities. The question is: what are they
probabilities of? Pn can be interpreted as the probability that a measurement of
the eigenstate of a system will result in the system being in eigenstate |n〉. However,
it must be recognized that such a measurement is never made on a macroscopic
system. Nevertheless, calculations using eq. (22.35) are carried out formally exactly
as if the Pns were probabilities of something physically relevant. There is no real
harm in referring to Pn as the ‘probability of being in eigenstate |n〉’ (which is often
found in textbooks), as long as you are aware of its true meaning. A more complete
description of why this is a useful—if not entirely correct—way of thinking about
quantum statistical mechanics is presented in Sections 22.5 and 22.6.

22.5 The Density Matrix

A very common representation of averages in a quantum ensemble is provided by
the ‘density matrix’, the operator of which is defined by a sum or integral over the
microscopic states in an ensemble.
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ρ =
∫

ψ

Pψ |ψ〉〈ψ| (22.37)

The density matrix ρn,m would be found by taking the matrix element between the
states |m〉 and |n〉.

ρn,m =
∫

ψ

Pψ〈m|ψ〉〈ψ|n〉 (22.38)

The density matrix is useful because it incorporates the information needed to
calculate ensemble averages. In particular, the ensemble average of an operator A is
given by

〈A〉 = Tr [ρA] (22.39)

where Tr indicates the trace of the matrix. To prove eq. (22.39), simply evaluate the
trace on the right-hand side of the equation.

Tr [ρA] =
∑
n

∫
ψ

Pψ〈n|ψ〉〈ψ|A|n〉 (22.40)

=
∫

ψ

∑
n

Pψ〈n|ψ〉〈ψ|A|n〉

=
∫
{cn}

∑
n

∑
	

∑
m

P{cn}c	c
∗
m〈n|�〉〈m|A|n〉

=
∫
{cn}

∑
n

∑
m

P{cn}cmc∗n〈m|A|n〉 = 〈A〉

The last equality is found by comparison with eq. (22.27).

22.6 The Uniqueness of the Ensemble

A peculiar feature of the density matrix is that although eq. (22.40) shows that it
contains enough information to calculate any ensemble average, it does not uniquely
specify the quantum ensemble. This can be seen from a simple example that compares
the following two different quantum mechanical ensembles for a simple harmonic
oscillator.

1. Ensemble 1: The SHO is either in the ground state |0〉 with probability 1/2, or it
is in the first excited state |1〉 with probability 1/2. In either case, the system is
in an eigenstate of the Hamiltonian. The density matrix operator corresponding
to this ensemble is then

ρ1 =
1
2

(|0〉〈0| + |1〉〈1|) (22.41)
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2. Ensemble 2: The system is in a state of the form

|φ〉 =
1√
2

(|0〉 + eiφ|1〉) (22.42)

with the values of φ being uniformly distributed between 0 and 2π. No member
of the ensemble is an eigenstate of the Hamiltonian The density matrix operator
corresponding to this ensemble is then

ρ2 =
1
2π

∫ 2π

0

dφ
1√
2

(|0〉 + eiφ|1〉) 1√
2

(〈0| + e−iφ〈1|)

=
1
4π

∫ 2π

0

dφ
(|0〉 + eiφ|1〉 + |0〉〈0| + |1〉〈1||0〉 + eiφ|1〉) (〈0| + e−iφ〈1|)

=
1
4π

∫ 2π

0

dφ
(|0〉〈0| + |1〉〈1| + e−iφ|0〉〈1| + eiφ|1〉〈0|)

=
1
2

(|0〉〈0| + |1〉〈1|) = ρ1 (22.43)

This shows that the same density matrix operator describes both an ensemble that
contains no eigenstates and an ensemble that contains only eigenstates. If we combine
this with the result in eq. (22.40), we see that the expectation value of any operator
is exactly the same for different ensembles as long as the density matrix operators are
the same—even if the two ensembles do not have a single quantum state in common!

It is usual to express the density matrix operator in terms of the eigenstates of
a system, which gives the impression that the ensemble also consists entirely of
eigenstates. Even though we know that this is not the case, the demonstration above
shows that all predictions based on the (erroneous) assumption that a macroscopic
system is in an eigenstate will be consistent with experiment.

22.7 The Quantum Microcanonical Ensemble

Now that we have reduced the problem of calculating averages in equilibrium quantum
statistical mechanics to averages over individual eigenstates, we need only evaluate the
set of ‘probabilities’, {Pn}, where n is the quantum number (or numbers) indexing the
eigenstates. In principle this is straightforward, and we might try to follow the same
procedure as in classical statistical mechanics. Consider a composite system, isolated
from the rest of the universe, with fixed total energy ET = EA + EB, assume all
states are equally ‘probable’ (subject to the constraints), and calculate the probability
distributions for observable quantities.

Unfortunately, we run into a technical difficulty that prevents us from carrying out
this procedure for anything other than one particularly simple model.
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If we represent each subsystem by its set of eigenfunctions and energy eigenvalues,
the total energy of the composite system must be the sum of an energy eigenvalue from
each subsystem, E = En,A + Em,B . To calculate the probabilities for distributing the
total energy among the two subsystems, we have to be able to take some amount of
energy from subsystem A and transfer it to subsystem B. Unfortunately, the energy
levels in a general macroscopic quantum system are not distributed in a regular fashion;
if we change the energy in subsystem A to En′,A = En,A + ΔE, there will generally not
be an eigenstate in subsystem B with an energy Em,B − ΔE. Even though the energy
eigenvalues in a macroscopic system are very closely spaced, we will not generally be
able to transfer energy between the subsystem and maintain a constant total energy.

It is important to recognize that this is a technical problem that has arisen because
we are treating each subsystem as a separate quantum system with its own set of
eigenfunctions and energy eigenvalues. It is not a fundamental inconsistency.

First of all, because macroscopic systems are never in an eigenstate, they do not
have precisely specified energy, and the typical spread in energy in typical states is far
greater than the tiny gap between energy levels. Beyond that, the interactions between
the two subsystems that are necessary to transfer energy between them will result in
a single set of eigenvalues for the full composite system.

The fact that the difficulty is purely technical is comforting, but we must still find
a way to do calculations. The most useful method is to make one of the subsystems
extremely large and treat it as a thermal reservoir. As a quantum system becomes
larger, its energy levels move closer together; in the limit of an infinite system, the
energy spectrum becomes a continuum, and it is always possible to find a state with
any desired energy. For this reason, we will abandon the microcanonical ensemble and
turn to the canonical ensemble for most calculations in quantum statistical mechanics.



23

Quantum Canonical Ensemble

I do not like it, and I am sorry I ever had anything to do with it.
Erwin Schrödinger, Austrian physicist (1887–1961), Nobel Prize 1933,

speaking about quantum mechanics.

The quantum canonical ensemble, like its classical counterpart, which was discussed
in Chapter 19, describes the behavior of a system in contact with a thermal reservoir.
As in the classical case, the detailed nature of the reservoir is not important; it must
only be big. This is partly to allow us to expand the entropy in powers of the ratio
of the size of the system to that of the reservoir, and also to allow us to treat the
eigenvalue spectrum of the reservoir as continuous.

An important thing to notice about quantum statistical mechanics as you go
through the following chapters is that the same ideas and equations keep showing
up to solve different problems. In particular, the solution to the quantum simple
harmonic oscillator (QSHO) turns out to be the key to understanding crystal
vibrations, black-body radiation, and Bose–Einstein statistics. The basic calculation
for the QSHO is discussed in Section 23.10; if you understand it completely, the
topics in Chapters 24 through 27 will be much easier. The other kind of calculation
that will appear repeatedly is one in which there are only a small number of quantum
energy levels. Indeed, in the most important case there are only two energy levels.
This might seem like a very limited example, but it provides the essential equations
for Chapters 26, 28, and 30.

23.1 Derivation of the QM Canonical Ensemble

The derivation of the quantum canonical ensemble follows the same pattern as the
derivation of the classical canonical ensemble in Section 19.3.

Let an eigenstate |n〉 for the system of interest have energy En and the reservoir
have energy ER, so that the total energy is ET = En + ER. Let ΩR(ER) = ΩR(ET −
En) be the degeneracy (number of eigenstates) of the energy level ER in the reservoir.
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The ‘probability’ Pn of an eigenstate with energy En in the system of interest is then
given by:

Pn =
ΩR(ET − En)

ΩT (ET )
(23.1)

As we did in Section 19.3, take the logarithm of both sides and use the fact that
ET � En to expand ln ΩR(ET − En) in powers of En/ET .

lnPn = ln ΩR(ET − En) − ln ΩT (ET )

≈ ln ΩR(ET ) − En
∂

∂ET
ln ΩR(ET ) − ln ΩT (ET ) + · · · (23.2)

The approximation becomes exact in the limit of an infinite reservoir. In practice, the
error due to using finite reservoirs is so much smaller than the errors in measurement,
that we will ignore the higher-order terms indicated by ‘+ · · · ’ and use an equal sign
for simplicity.

In analogy to the classical derivation in Section 19.3, we identify

β =
1

kBT
=

∂

∂ET
ln ΩR(ET ) (23.3)

so that we can write eq.(23.2) as

lnPn = − ln Z − βEn (23.4)

or

Pn =
1
Z

exp(−βEn) (23.5)

In eqs. (23.4) and (23.5), we have introduced the normalization factor Z =
ln ΩR(ET ) − ln ΩT (ET ).

The normalization factor Z is known as the quantum mechanical partition function
(in analogy to the classical partition function) and can be evaluated by summation
over all eigenstates.

Z =
∑
n

exp(−βEn) (23.6)

Note that the quantum Boltzmann factor exp(−βEn) plays the same role as the
classical Boltzmann factor in eq. (19.17). The quantum mechanical partition function
plays the same role as the classical partition function.

Eq. (23.6) is often used as a starting point in textbooks on quantum statistical
mechanics because of its simplicity. Unfortunately, its validity and significance are
not completely obvious without an explanation. It is a good starting point for
many calculations in quantum statistical mechanics. However, a problem arises if
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we consider a quantum theory of distinguishable particles. A common procedure is
to ignore this possibility, but since a quantum theory of colloidal particles (which
are distinguishable) should make sense, we will include this case in a later chapter. It
should not come as a surprise that a factor of 1/N ! will play a role in the discussion,
and eq. (23.6) will have to be modified to include the factor of 1/N ! explicitly.

It is often convenient to reexpress eq. (23.6) in terms of the energy levels. In that
case, we must include the degeneracy Ω(�) for each energy level �.

Z =
∑

	

Ω(�) exp(−βE	) (23.7)

It is essential to remember that in eq. (23.6) the index n runs over the quantum
numbers for the eigenstates of the system—not the energy levels—and that you
need to include the degeneracy as in eq. (23.7) if you are summing over energy
levels.

23.2 Thermal Averages and the Average Energy

Combining eq. (23.6) with eq. (22.35), we find a very useful expression for the average
of an operator A in the canonical ensemble, that is, at a temperature T = 1/kBβ.

〈A〉 =
∑

n

Pn〈n|A|n〉 (23.8)

Inserting the expression for Pn from eq. (23.5), this becomes

〈A〉 =
1
Z

∑
n

〈n|A|n〉 exp(−βEn) (23.9)

A particularly important case is the average energy.

U = 〈H〉 =
1
Z

∑
n

〈n|H|n〉 exp(−βEn) =
1
Z

∑
n

En exp(−βEn) (23.10)

23.3 The Quantum Mechanical Partition Function

Although the partition function Z was introduced simply as a normalization factor
in eq. (23.6), it turns out to be very useful in its own right in the same way that the
classical partition function was found to be useful in Chapter 19. As in the classical
case, the partition function in eq. (23.6) depends on the temperature as β = 1/kBT .
If we take the derivative of the logarithm of the partition function, we find
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(
∂

∂β
lnZ

)
V,N

=
1
Z

(
∂

∂β

∑
n

exp(−βEn)

)
V,N

=
1
Z

∑
n

(−En) exp(−βEn) = −U

(23.11)
If we compare this equation to the thermodynamic identity(

∂(βF )
∂β

)
V,N

= U (23.12)

we see that we can integrate it to obtain

lnZ = −βF + f(V,N) (23.13)

in which the function f(V,N) has not yet been determined.
To determine the function f(V,N), first consider the derivative of

F = −kbT [lnZ − f(V,N)] (23.14)

with respect to temperature.(
∂F

∂T

)
V,N

= −kB[lnZ − f(V,N)] − kbT
∂β

∂T

∂

∂β
lnZ (23.15)

= −kB[−βF ] − kbT

( −1
kBT 2

)
(−U)

=
1
T

(F − U) =
1
T

(U − TS − U) = −S

Clearly, the function f(V,N) has no effect on either the energy or the entropy.
Next consider the derivative of F with respect to volume.(

∂F

∂V

)
T,N

= −kBT

[
∂

∂V
lnZ − ∂

∂V
f(V,N)

]
(23.16)

= −kBT
1
Z

∑
n

(
−β

∂En

∂V

)
exp(−βEn) − kBT

∂f

∂V

=
1
Z

∑
n

(
∂En

∂V

)
exp(−βEn) − kBT

∂f

∂V

Now we need the relationship between the pressure the system would have in an
eigenstate, and the partial derivative of the energy of that eigenstate with respect to
the volume. To avoid confusion with Pn defined earlier in this section, we will denote
the pressure of the system in an eigenstate by P (|n〉).

P (|n〉) = −
(

∂En

∂V

)
T,N

(23.17)
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Combining eqs. (23.16) and (23.17), we find

(
∂F

∂V

)
T,N

= − 1
Z

∑
n

P (|n〉) exp(−βEn) − kBT
∂f

∂V
= −P (23.18)

where P is the average pressure. Since P must be given by the weighted average of
the pressures in the eigenstates,

P =
1
Z

∑
n

P (|n〉) exp(−βEn) (23.19)

the partial derivative of f(V,N) with respect to V must vanish; f can only be a
function of N .

f(V,N) = f(N) (23.20)

At this point, we would need to examine the N -dependence of the energy eigen-
values, but this is best done later in the context of the discussion of the quantum
ideal gas and the exchange of particles with a reservoir. For the time being we will
tentatively assign the value zero to the function f(N). This will turn out to be a valid
choice for fermions or bosons, but not for distinguishable particles.

The (tentative) choice of f(N) = 0 has the great advantage of simplifying
eq. (23.13) and giving it the same form as in classical statistical mechanics.

lnZ = −βF (23.21)

or

Z = exp(−βF ) (23.22)

As noted in the first box in Section 23.1, the case of distinguishable particles has
to be handled rather differently. We will see that the proper choice for a system of
distinguishable particles is f(N) = − ln(N !).

23.4 The Quantum Mechanical Entropy

The expression for the entropy can also be written in another form, which is both
useful and revealing.
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As in eq. (23.15), take the derivative of the free energy with respect to temperature
to find the (negative) entropy, but now set f(V,N) = 0.(

∂F

∂T

)
V,N

= −kB lnZ − kbT

( −1
kBT 2

)
∂

∂β
lnZ

= −kB lnZ +
1

TZ

∑
n

(−En) exp(−βEn) (23.23)

In the second line of this equation we have used eq. (23.6) to express the derivative of
the partition function in terms of a sum. Now recall from eq. (23.5) that

Pn =
1
Z

exp(−βEn) (23.24)

or

lnPn = − ln Z − βEn (23.25)

and, of course,

∑
n

Pn =
1
Z

∑
n

exp(−βEn) = 1 (23.26)

Eq. (23.23) can now be written as

(
∂F

∂T

)
V,N

= −kB

[
lnZ
∑

n

Pn − β

Z

∑
n

(−En) exp(−βEn)

]

= −kB

∑
n

[Pn lnZ + βEnPn]

= kB

∑
n

Pn lnPn = −S, (23.27)

which gives us an alternative expression for the entropy.

S = −kB

∑
n

Pn lnPn (23.28)

Eq. (23.28) is often taken as a fundamental starting point in books on statistical
mechanics. Its simplicity is certainly an advantage of this choice. Nevertheless, the
validity of this equation is not really obvious without a derivation such as the one
given above.
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23.5 The Origin of the Third Law of Thermodynamics

An important consequence of eq. (23.28) is that since 1 ≥ Pn ≥ 0 and lnPn ≤ 0, the
entropy is always positive. This implies that the limit of the entropy as the temperature
goes to zero is non-negative. Since the entropy at T = 0 must be a constant, and not
minus infinity as it is in classical statistical mechanics, this establishes the Nernst
Postulate, or Third Law of Thermodynamics, as a general consequence of quantum
mechanics.

To investigate the value of the entropy at T = 0, we note that

Pn =
1
Z

exp(−βEn) =
exp(−βEn)∑
n exp(−βEn)

(23.29)

If we express the partition function in terms of energy levels indexed by �, we can
write

Z =
∑

	

Ω(�) exp(−βE	) (23.30)

where Ω(�) is the degeneracy of the �th level.
Let � = 0 be the lowest energy level, so that Ω(0) is the degeneracy of the ground

state. Eq. (23.30) can then be written as

Z = Ω(0) exp(−βE0)

[
1 +
∑
	>0

(
Ω(�)
Ω(0)

)
exp(−β(E	 − E0))

]
(23.31)

Since � = 0 is the lowest energy level, E	 − E0 > 0 for all � > 0. That implies that as
T → 0, the ground state probability, P0, is given by

lim
T→0

P0 = lim
T→0

exp(−βE0)

Ω(0) exp(−βE0)
[
1 +
∑

	>0

(
Ω(	)
Ω(0)

)
exp(−β(E	 − E0))

]

=
1

Ω(0)
lim
T→0

[
1 +
∑
	>0

(
Ω(�)
Ω(0)

)
exp(−β(E	 − E0))

]−1

=
1

Ω(0)
(23.32)

and the probability of any higher level with E	 > E0, is

lim
T→0

P	 = lim
T→0

exp(−βE	)

Ω(0) exp(−βE0)
[
1 +
∑

	′>0

(
Ω(	′)
Ω(0)

)
exp(−β(E	′ − E0))

]

=
exp(−β(E	 − E0))

Ω(0)
lim
T→0

[
1 +
∑
	′>0

(
Ω(�′)
Ω(0)

)
exp(−β(E	′ − E0))

]−1

= 0 (23.33)
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Now return to eq. (23.28) for the entropy in terms of the set of ‘probabilities’ {Pn}.
Since we have the general result that limx→0(x lnx) = 0, we can see that

lim
T→0

S(T ) = −kB Ω(0)
1

Ω(0)
ln

1
Ω(0)

= kB ln Ω(0) (23.34)

If the ground state is non-degenerate, Ω(0) = 1, and S(T = 0) = 0. Otherwise, it
is a positive number.

We are often interested in the entropy per particle, rather than the total entropy.
At zero temperature, S(T = 0)/N , is given by

S(T = 0)
N

=
kB ln Ω(0)

N
(23.35)

If Ω(0) does not depend on the size of the system, the entropy per particle vanishes
as the system size diverges. For a finite but macroscopic system, the entropy per
site at zero temperature is non-zero, but immeasurably small. This is the origin of
the Planck formulation of the Nernst Postulate (or Third Law of Thermodynamics),
which requires the entropy to be zero at T = 0.

However, there is another possibility. Suppose that the degeneracy of the ground
state depends on the size of the system as

Ω(0) = aN (23.36)

where a > 1 is some positive constant. Then the zero-temperature entropy per particle
is given by

S(T = 0)
N

=
kB ln aN

N
= kB ln a > 0 (23.37)

This would violate the Planck formulation of the Nernst Postulate, but Nernst’s
original formulation would still be valid.

The possibility suggested by eq. (23.37) actually occurs, both in model calcu-
lations and real experiments. The essential feature of a system that exhibits
S(T = 0)/N > 0 is a disordered ground state. This is true of normal window glass,
and has been confirmed by experiment. It is also true of an interesting class
of materials called ‘spin glasses’, which are formed when a small fraction of a
magnetic atom (such as iron) is dissolved in a non-magnetic material (such as
copper). For reasons that go beyond the scope of this book, the ground state of
this system is highly disordered, leading to a large number of very low-lying energy
levels. Although the ground-state degeneracy for these materials does not strictly
follow eq. (23.36), the predicted zero-temperature limit S(T = 0)/N > 0 is found
experimentally. There are approximate models of spin glasses for which eq. (23.37)
can be shown to be exactly correct.
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23.6 Derivatives of Thermal Averages

Since the partition function depends on the temperature in a simple way, we can
express derivatives of thermal averages with respect to T or β in terms of fluctuations.
This extremely useful mathematical technique has already been discussed for the
classical case in Section 19.8.

For simplicity, begin with derivatives with respect to β. Eq. (23.9) gives the formal
expression for the thermal average 〈A〉.

〈A〉 =
1
Z

∑
n

〈n|A|n〉 exp(−βEn) (23.38)

The partial derivative of 〈A〉 with respect to β gives the equation

∂

∂β
〈A〉 =

1
Z

∑
n

〈n|A|n〉(−En) exp(−βEn)

= − [〈AE〉 + 〈A〉〈E〉] (23.39)

This result is completely general.
Applying eq. (23.39) to the thermal average of the energy, we find

∂

∂β
〈H〉 =

∂U

∂β
= − [〈E2〉 − 〈E〉2]

So we find that the derivative of the energy with respect to β is given by the negative
of the variance of the energy.

If we apply this equation to the calculation of the specific heat, we find

cV =
1
N

∂U

∂T
=

1
N

∂β

∂T

∂U

∂β
=

1
NkBT 2

[〈E2〉 − 〈E〉2] (23.40)

The proportionality between the specific heat and the variance of the energy is exactly
the same in quantum and classical mechanics. (We derived the classical version in
Section 19.9.)

The relationship between thermal fluctuations and thermodynamic derivatives is
both deep and powerful. Using it can make seemingly difficult calculations become
very easy.

23.7 Factorization of the Partition Function

The best trick in quantum statistical mechanics corresponds directly to the best trick
in classical statistical mechanics, which was discussed in Section 19.12. In both cases,
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the form of the Hamiltonian allows us to factor the partition function, transforming a
many-dimensional problem into many low-dimensional problems.

It is quite common to encounter problems in which the Hamiltonian can—at least
approximately—be written as a sum of N terms,

H =
N∑

j=1

Hj (23.41)

where the terms Hj all commute with one another. If this is true, the eigenvalue
equation for Hj is

Hj |nj〉 = Enj
|nj〉 (23.42)

and the eigenvector of the full system can be written as

|n〉 =
N∏

k=1

|nk〉 (23.43)

where we have used the index n to denote the full set of quantum numbers.

n ≡ {nj |j = 1, . . . , N} (23.44)

Since the term Hj only acts on |nj〉,

Hj |n〉 = Enj

N∏
k=1

|nk〉 = Enj
|n〉 (23.45)

The full eigenvalue equation becomes

H|n〉 =
N∑

j=1

Hj

N∏
k=1

|nk〉 =
N∑

j=1

Enj

N∏
k=1

|nk〉 =
N∑

j=1

Enj
|n〉 = En|n〉 (23.46)

where

En =
N∑

j=1

Enj
(23.47)
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We can use eq. (23.47) to cast the partition function in a very convenient form.

Z =
∑
{nj}

exp(−β

N∑
j=1

Enj )

=
∑
{nj}

N∏
j=1

exp(−βEnj )

=
∑
nN

exp(−βEnN
) · · ·
∑
n2

exp(−βEn2)
∑
n1

exp(−βEn1)

=
N∏

j=1

(∑
n1

exp(−βEn1)

)
(23.48)

Since this equation is extremely useful, we will repeat it without the intermediate
steps.

Z =
∑
{nj}

N∏
j=1

exp(−βEnj
) =

N∏
j=1

⎛
⎝∑

nj

exp(−βEnj
)

⎞
⎠ (23.49)

This form of the partition function allows us to factor it into a product of terms,
each of which is much easier to evaluate than the original expression. Just as for the
corresponding equation in classical mechanics (see Section 19.12), difficult problems
can become very easy by using eq. (23.49).

Because of the importance of eq. (23.49) and the frequency with which it is used,
we should call attention to a mental hazard associated with it that can catch the
unwary. In eq. (23.49) we are exchanging a sum and a product.

∑
{nj}

N∏
j=1

←→
N∏

j=1

∑
nj

However, the sums on the right and left sides of the equation are not over the same
quantum numbers. The sum on the right,

∑
nj

, is only over the quantum numbers
associated with the term Hj in the Hamiltonian. The sum on the left,

∑
{nj}, is

over the set of all quantum numbers for the entire system. In the heat of battle
(while taking a test), it is not unusual to forget to write the indices of sums and
products explicitly. Omitting the indices is always a bad way to save time, but it
can be especially dangerous when using eq. (23.49).

We are now in a position to see why eq. (23.49) is so valuable. From eq. (23.21), the
free energy is given by the logarithm of the partition function. When the Hamiltonian
has the form given in eq. (23.41), the free energy becomes particularly simple.
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F = −kBT lnZ = −kBT ln
∑
{nj}

N∏
j=1

exp(−βEnj
)

= −kBT ln
N∏

j=1

⎛
⎝∑

nj

exp(−βEnj
)

⎞
⎠

= −kBT

N∑
j=1

ln

⎛
⎝∑

nj

exp(−βEnj )

⎞
⎠ (23.50)

Since the sums in the last line of this equation are only over a single quantum number,
rather than all combinations of N quantum numbers, they are much easier to carry
out.

If the spectrum of eigenvalues is the same for every term Hj , eq. (23.49) simplifies
further.

F = −kBTN ln
∑
n1

exp(−βEn1) (23.51)

In the following sections we will discuss the simplest examples of component
systems that we might find after factorization. These examples are important because
they occur repeatedly in quantum statistical mechanics. We will see applications of
the same mathematical forms in the analysis of magnets, vibrations in crystals, black-
body radiation, fermions, and bosons. Consequently, these examples are to be studied
very carefully; if you know them well, most of the mathematics in the rest of the book
will look familiar.

23.8 Special Systems

There are a number of many-body systems for which the partition function can be
easily found because they have a small number of energy levels. For such systems, it
is an easy matter to sum up a small number of terms to obtain the partition function.

There are two classes of systems that are so important in the development of
statistical mechanics that we will devote the remaining sections in this chapter to
their analysis. These systems are the simple harmonic oscillators and any system with
only two energy eigenstates.

23.9 Two-Level Systems

The simplest imaginable quantum system would have only one state—but it would
not be very interesting.

The next simplest system has two quantum eignstates. There are two forms in
which we will encounter a two-level system. The mathematics is essentially the same
in both cases, but since the usual ways of expressing the results differ, they are both
worth studying.
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23.9.1 Energies 0 and ε

The first form for a two-level system assigns the energies 0 and ε to the levels. Letting
the quantum number n take on the values of 0 and 1, the Hamiltonian is simply

H = εn (23.52)

The partition function contains just two terms.

Z =
1∑

n=0

exp(−βεn) = 1 + exp(−βε) (23.53)

The free energy and the energy are easily found.

F = −kBT lnZ = −kBT ln(1 + exp(−βε)) (23.54)

U =
∂βF

∂β
=

ε exp(−βε)
1 + exp(−βε)

=
ε

exp(βε) + 1
(23.55)

Note that the average value of the quantum number n (average number of excitations
in the system) is given by

〈n〉 =
1∑

n=0

n
1
Z

exp(−βεn) =
0 + exp(−βε)
1 + exp(−βε)

=
1

exp(βε) + 1
(23.56)

which is consistent with the average value of the energy.

U = 〈H〉 =
1∑

n=0

H
1
Z

exp(−βεn) =
1∑

n=0

εn
1
Z

exp(−βεn) = ε〈n〉 (23.57)

It will be very important to remember the expression for 〈n〉 given in eq. (23.56),
and especially the positive sign of the exponent in the denominator. Since the usual
Boltzmann factor exp(−βH) contains a negative sign, confusing the sign is a well-
known mental hazard.

The entropy is given, as usual, by S = (U − F )/T . It will be left as an exercise to
find the zero-temperature limit of the entropy, as well as its dependence on ε.

23.9.2 Spin One-Half

The second form in which we encounter two-level systems is related to magnetism.
If the operator σ takes on the values +1 and −1 (ignoring factors of Planck’s constant),
the Hamiltonian

H = −hσ (23.58)
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corresponds to a spin-one-half magnetic moment in an magnetic field h. In this
equation h has units of energy, which makes life easier.

The notation in eq. (23.58) does raise the possibility of confusion between the
magnetic field and Planck’s constant. I apologize, but beg to be excused because it
is a very common notation. Fortunately, Planck’s constant almost never appears in
the literature that discusses this model. We will use h to denote the magnetic field
rather than Planck’s constant only in this section and in Chapter 30.

The partition function again contains just two terms.

Z =
∑

σ=±1

exp(−β(−hσ)) = exp(βh) + exp(−βh) (23.59)

The free energy and the energy are again easily found.

F = −kBT lnZ = −kBT ln [exp(βh) + exp(−βh)] (23.60)

U =
∂(βF )

∂β
= −B

exp(βh) − exp(−βh)
exp(βh) + exp(−βh)

= −h tanh(βh) (23.61)

Note that the average value of σ (average magnetization) is given by

〈σ〉 =
∑

σ=±1

σ
1
Z

exp(βhσ) =
exp(βh) − exp(−βh)
exp(βh) + exp(−βh)

= tanh(βh) (23.62)

which is consistent with the average value of the energy.
It is traditional to use the hyperbolic tangent in magnetic problems and the

exponential sums for other two-level systems. The two forms are, of course, equivalent.
The mathematical expressions

tanhx =
ex − e−x

ex + e−x
=

1 − e−2x

1 + e−2x
(23.63)

are good choices for memorization.

23.10 Simple Harmonic Oscillator

The Hamiltonian of a simple harmonic oscillator (SHO) in one dimension is given by

H =
1
2
Kx2 +

p2

2m
=

1
2
Kx2 − �

2

2m

d2

dx2
(23.64)

where m is the mass of the particle and K is the spring constant.
The energy spectrum for a simple harmonic oscillator (SHO) has an infinite number

of states, labeled by a quantum number that takes on non-negative integer values,
n = 0, 1, . . . ,∞.
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En = �ω

(
n +

1
2

)
(23.65)

The angular frequency, ω, in eq. (23.65) is identical to the classical value.

ω =

√
K

m
(23.66)

Even though there is an infinite number of states, the uniform spacing makes the
evaluation of the partition function only slightly more difficult than for a two-level
system.

Z =
∞∑

n=0

exp (−β�ω(n + 1/2))

=
exp(−β�ω/2)

1 − exp(−β�ω)
(23.67)

Sums of the form
∞∑

n=0

x−n =
1

1 − x

occur frequently in quantum statistical mechanics. The savvy student should expect
it to appear on tests—and not only know it, but know how to derive it.

For high temperatures (small β), we expect the partition function to go to the
classical value, Zclass = 1/(�βω), as found in Section 19.13.

Z =
exp(−β�ω/2)

1 − exp(−β�ω)

→ (1 − β�ω/2 + · · · )
[
1 −
(

1 − β�ω +
1
2
(β�ω)2 + · · ·

)]−1

→ 1
β�ω

(
1 − β�ω/2 + · · ·
1 − β�ω/2 + · · ·

)

→ 1
β�ω

(23.68)

This agreement between the classical and quantum results for an SHO is the basic
justification for the inclusion of the factors involving 1/h (where h is Planck’s constant)
in the classical definitions of the entropy in eqs. (7.3) and (7.30), and the partition
function in eq. (19.27).
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Returning to the full quantum partition function given in eq. (23.67), we can easily
obtain the free energy and the energy.

F = −kBT lnZ

= −kBT ln exp(−β�ω/2) + kBT ln(1 − exp(−β�ω))

=
1
2

�ω + kBT ln(1 − exp(−β�ω)) (23.69)

U =
∂(βF )

∂β

=
1
2

�ω +
�ω exp(−β�ω)
1 − exp(−β�ω)

=
1
2

�ω +
�ω

exp(β�ω) − 1
(23.70)

The form of the energy in eq. (23.70) can be compared with the formal expression
for the average of the energy.

〈En〉 =
1
2

�ω + �ω〈n〉 (23.71)

Either from this comparison or from a direct calculation, we can see that the average
number of excitations of the SHO is given by the expression

〈n〉 =
1

exp(β�ω) − 1
(23.72)

As it was for the average number of excitations in a two-level system in eq. (23.56),
it will be very important to remember the expression for 〈n〉 in eq. (23.72) for a
quantum SHO. Here again, the positive sign of the exponent in the denominator
can be easily forgotten, which would have a negative effect on your grades.

23.11 Einstein Model of a Crystal

Our first application of the quantum simple harmonic oscillator is Einstein’s model of
the vibrations of a crystal. Einstein made the approximation that all atoms except one
were fixed at their average locations. He then approximated the potential seen by the
chosen atom as being parabolic, so that he could treat the motion of the remaining
atom as a three-dimensional SHO.

Assuming for simplicity that the quadratic terms are isotropic, the Hamiltonian
for the one moving particle is

H1 =
1
2
K|�r1|2 +

|�p1|2
2m

(23.73)
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where the subscript 1 indicates that this Hamiltonian only applies to the one special
particle.

The partition function for this system factorizes into three identical terms, each
given by the partition function of the one-dimensional SHO from eq. (23.68).

Z1 =
(

exp(−β�ω/2)
1 − exp(−β�ω)

)3

(23.74)

The energy is just three times the energy of a single one-dimensional SHO.

U1 =
3
2

�ω +
3�ω

exp(β�ω) − 1
(23.75)

For N atoms in the crystal, the total energy is just N times the energy of a single
atom.

UN =
3
2
N�ω +

3N�ω

exp(β�ω) − 1
(23.76)

The specific heat at constant volume is then given by the usual derivative with
respect to temperature.

cV (T ) =
1
N

(
∂UN

∂T

)
V,N

=
1
N

∂β

∂T

∂

∂β

(
3N�ω

exp(β�ω) − 1

)

= − 3�ω

kBT 2

∂

∂β

(
1

exp(β�ω) − 1

)

= − 3�ω

kBT 2

−�ω exp(β�ω)
(exp(β�ω) − 1)2

= 3kB

(
�ω

kBT

)2 exp(β�ω)
(exp(β�ω) − 1)2

(23.77)

The final expression for cV (T ) in eq. (23.77) has interesting properties at high and
low temperatures.

At high temperatures (small β), the factor of exp(β�ω) in the numerator goes to
one, while the expression in the denominator can be expanded.

(exp(β�ω) − 1)2 = (1 + β�ω + · · · − 1)2 → (β�ω)2 (23.78)

Using this to find the high-temperature limit of cV (T ) gives:

cV (T ) → 3kB

(
�ω

kBT

)2 1
(β�ω)2

= 3kB (23.79)
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This constant value of the specific heat at high temperatures is just the well-known law
of Dulong and Petit. It is identical to the specific heat of the corresponding classical
model.

At low temperatures (large β), the factor of exp(β�ω) becomes extremely large,
and the ‘−1’ in the denominator can be neglected.

cV (T ) → 3kB (β�ω)2 exp(−β�ω) (23.80)

Even though the factor of β2 diverges at low temperature, the factor of exp(−β�ω)
goes to zero much faster. The result is that the specific heat in the Einstein model
goes to zero rapidly as the temperature goes to zero, as it must according to the Third
Law of Thermodynamics.

The Einstein model was a great success in explaining the qualitative features of
the specific heat of crystals at low temperatures and the quantitative behavior at high
temperatures. Nevertheless, the specific heat of real crystals does not go to zero as
rapidly as predicted by eq. (23.80). Instead, a T 3 behavior is seen in insulators, while
the specific heat of metals is linear in T at low temperatures. The explanations of
these observations will be given in Chapters 25 and 28.

The next chapter discusses black-body radiation, which might seem to be a bit
of a detour. However, it turns out that the mathematical form of the equations we
will find is very similar to, but simpler than, the equations needed to explain the low-
temperature behavior of the specific heat of crystals, which will follow in Chapter 25.

23.12 Problems

Problem 23.1

Quantum statistical mechanics: A spin in a magnetic field

Consider a magnetic moment with spin-one-half in a magnetic field. Being a lazy
theorist, I prefer not to write �/2 repeatedly, so I will use units in which the spin
σ = ±1. I will also choose the units of the magnetic field such that the energy of the
system is just

E = −hσ

The system is in contact with a heat reservoir at temperature T .

1. Calculate the probability of the spin having the value +1.
2. Calculate the average magnetization m = 〈σ〉. Express your answer in terms of

hyperbolic functions.
3. Calculate the two leading terms in a high-temperature expansion of the magne-

tization in powers of β = 1/kBT .
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4. Calculate the leading (non-constant) term in a low-temperature power series
expansion of the magnetization in some variable at low temperatures. (Hint:
it will be in the form of an exponential.)

5. Calculate the average energy. Plot it as a function of temperature.
6. Calculate the specific heat. Plot it as a function of temperature
7. Calculate the magnetic susceptibility.

χ =
dm

dh

Problem 23.2

A computer simulation of a two-level system Quantum statistical mechan-
ics: A spin in a magnetic field

Consider the same magnetic moment with spin-one-half in a magnetic field that we
looked at in an earlier problem. The units of the magnetic field are again chosen such
that the energy of the system is just

E = −hσ

The system is in contact with a heat reservoir at temperature T .
For this problem, instead of doing an analytic calculation, we will carry out a

computer simulation using the Monte Carlo method. Although this might seem to
be the hard way to do it, we will see later that the method can be generalized to solve
problems that do not have analytic solutions.

1. Write a computer program to simulate this two-level system. The program should
calculate the thermal probability of being in each state, as well as the average
magnetization and the magnetic susceptibility. Have the program print out of the
theoretical values for comparison.

2. Use your program to calculate the magnetization and magnetic susceptibility for
a set of ‘interesting’ values of the magnetic field and temperature.

Problem 23.3

Quantum statistical mechanics: Another two-level system

Although a two-level system might seem very simple, it is very important and occurs
frequently in various guises. Here is another form that we will see often.

A system only has two states, which are both non-degenerate. The energies of these
two states are E = 0 and E = ε > 0.

The system is in contact with a heat reservoir at temperature T .

1. Calculate the probability of being in the excited state.
2. Calculate the average energy. Sketch it as a function of temperature.
3. Calculate the average specific heat. Sketch it as a function of temperature.
4. Calculate the two leading terms in a high-temperature expansion of the energy

in powers of β = 1/kBT .
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5. Calculate the leading (non-constant) term in a low-temperature power series
expansion of the energy in some variable at low temperatures. (Hint: the variable
will be in the form of an exponential.)

Problem 23.4

Quantum statistical mechanics: Return of the simple harmonic oscillator

The energy levels of a quantum SHO are given by

En = �ω

(
n +

1
2

)

where n = 0, 1, 2, . . . ,

� =
h

2π

and

ω =

√
K

m

1. Calculate the QM partition function.
2. Calculate the probability that a measurement of the energy will find the QM

SHO in the n-th eigenstate.
3. Calculate the average energy.
4. Calculate the specific heat.
5. Calculate the high-temperature limit of the specific heat.
6. Calculate the leading term in a low-temperature expansion of the specific heat.

(You should be able to figure out what a good quantity to expand in would be.)

Problem 23.5

A Monte Carlo computer simulation of a quantum SHO

As we’ve seen before, the energy levels of a quantum SHO are given by

En = �ω

(
n +

1
2

)

where n = 0, 1, 2, . . . ,

� =
h

2π

and

ω =

√
K

m
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This time we shall carry out a Monte Carlo simulation of this system. There are, of
course, an infinite number of possible states. However, the probability of high-energy
states is very small, making the simulation feasible.

1. Write a program to do a Monte Carlo simulation of a single quantum SHO. Label
the state of the system with the quantum number n, as in the equations above.
Let one MC step consist of an attempted move to increase or decrease n by ±1.
Remember to reject any attempted move that would make n negative.

2. Compute the energy and specific heat (the latter from fluctuations) for a range
of interesting temperature. For convenience, you may take �ω = 1.0. Have the
program print out the exact values for comparison.

Problem 23.6

Quantum statistical mechanics: A many-spin system

Consider a macroscopic crystal with a spin-one quantum mechanical magnetic moment
located on each of N atoms. Assume that we can represent the energy eigenvalues of
the system with a Hamiltonian of the form

H = D

N∑
n=1

σ2
n

where each σn takes on the values −1, 0, or +1, and D is a constant representing a
‘crystal field’. The entire system is in contact with a thermal reservoir at tempera-
ture T .

1. Calculate the partition function for this system.
2. Calculate the free energy of this system.
3. Calculate the quantity

Q =
1
N

〈
N∑

n=1

σ2
n

〉

4. Calculate the entropy per spin of this system.
5. Determine whether this system satisfies the Nernst Postulate for all values of the

parameters.

Problem 23.7

Quantum statistical mechanics: A many-spin system (This is a more diffi-
cult version of the previous problem)

Consider a macroscopic crystal with a spin-one quantum mechanical magnetic moment
located on each of N atoms. Assume that we can represent the energy eigenvalues of
the system with a Hamiltonian of the form
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H = B
N∑

n=1

σn + D
N∑

n=1

σ2
n

where each σn takes on the values −1, 0, or +1, and B and D are constants representing
an external magnetic field and a “crystal field,” respectively. The entire system is in
contact with a thermal reservoir at temperature T .

1. Calculate the partition function for this system.
2. Calculate the free energy of this system.
3. Calculate the magnetization per spin

m =
1
N

〈
N∑

n=1

σn

〉

4. Calculate the entropy per spin of this system.
5. Determine whether this system satisfies the Nernst Postulate for all values of the

parameters.

Problem 23.8

A diatomic ideal gas Quantum statistical mechanics—but only when
needed

Consider a dilute diatomic gas that you can treat as ideal in the sense of neglecting
interactions between the molecules. We shall assume that the molecules consist of two
point masses with a fixed distance between them. They can rotate freely, but they
cannot vibrate.

The center of mass motion (translational degrees of freedom) can be treated
classically. However, the rotational degrees of freedom must be treated quantum
mechanically.

The quantum mechanical energy levels take the form ε(j) = j(j + 1)εo, where
j = 0, 1, 2, . . . and the degeneracy of the j-th level is given by g(j) = 2j + 1. (You can
peek at a QM text to find the value of εo, but you do not need it for this assignment.)

Although you do not need it for this assignment, the parameter εo is given by

ε0 =
�

2

2I

where I is the moment of inertia of a molecule.
The whole system is in equilibrium with a thermal reservoir at temperature T .

1. Write down the canonical partition function, treating the translational degrees of
freedom classically and the rotational degrees of freedom quantum mechanically.

2. Evaluate the energy and the specific heat for both high and low temperatures.
3. Sketch the energy and the specific heat as functions of temperature, indicating

both the high- and low-temperature behavior.
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Problem 23.9

Another diatomic ideal gas—entirely classical this time, but in two dimen-
sions

Consider a classical, dilute, diatomic gas in two dimensions. The gas is again ideal
in the sense of neglecting interactions between the molecules. Each molecule consist
of two point masses. Although there are no interactions between different molecules,
there is an interaction between the atoms in the same molecule of the form

V (r) =
{

J ln(r) r > a
∞ r ≤ a

The gas is contained in a two-dimensional ‘box’ of area A = L2. The whole system is
in equilibrium with a thermal reservoir at temperature T .

1. What is the classical Hamiltonian for this system?
2. Write the canonical partition function as an integral over phase space.
3. Calculate the partition function in closed form, under the assumption that the

molecule is much smaller than the box it is in. That is, let the limits on the
integral over the separation between the atoms in a molecule extend to ∞.

4. This model is only valid for low temperatures. At what temperature do you expect
it to break down?

5. Now calculate the average square separation 〈r2〉 between the atoms in a molecule.

Problem 23.10

Two-level quantum systems

1. Consider a simple set of N two-level subsystems. The subsystems are all inde-
pendent, and each has two allowed states with energies 0 (ground state) and ε
(excited state) so that the full Hamiltonian can be written as

H =
N∑

n=1

E(n)

where E(n) = 0 or E(n) = ε The entire system is in thermal equilibrium at
temperature T .

1. At what temperature is the average total energy equal to
1
3
Nε?

2. At what temperature is the average total energy equal to
2
3
Nε?

2. Suppose the subsystems in the previous problem had the same ground state with
energy 0, but different values of the energy in the excited states. Assume that
the energy of the excited state of the n-th subsystem is nε.
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1. What is the average energy of the total system?
2. Suppose we are in the low-temperature regime, for which kBT � Emax. Calcu-

late the average energy. You may leave your answer in terms of a dimensionless
integral, but you should obtain the temperature dependence.

3. What is the heat capacity of the total system?
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Black-Body Radiation

The spectral density of black body radiation ... represents something absolute,
and since the search for the absolutes has always appeared to me to be the
highest form of research, I applied myself vigorously to its solution.

Max Planck, German physicist (1858–1947), Nobel Prize 1918

24.1 Black Bodies

In physics, the expression ‘black body’ refers to an object that absorbs all radiation
incident on it and reflects nothing. It is, of course, an idealization, but one that can
be approximated very well in the laboratory.

A black body is not really black. Although it does not reflect light, it can and does
radiate light arising from its thermal energy. This is, of course, necessary if the black
body is ever to be in thermal equilibrium with another object.

The purpose of the current chapter is to calculate the spectrum of radiation
emanating from a black body. The calculation was originally carried out by Max
Planck in 1900 and published the following year. This was before quantum mechanics
had been invented—or perhaps it could be regarded the first step in its invention. In
any case, Planck investigated the consequences of the assumption that light could only
appear in discrete amounts given by the quantity

Δεω = hν = �ω (24.1)

where ν is the frequency, ω = 2πν is the angular frequency, h is Planck’s constant, and
� = h/2π. This assumption is well accepted today, but it was pretty daring in 1900
when Max Planck introduced it.

24.2 Universal Frequency Spectrum

If two black bodies at the same temperature are in equilibrium with each other, the
frequency spectrum must be the same for each object. To see why, suppose that two
black bodies, A and B, are in equilibrium with each other, but that A emits more
power than B in a particular frequency range. Place a baffle between the objects that
transmits radiation well in that frequency range, but is opaque to other frequencies.
This would have the effect of heating B and cooling A, in defiance of the Second Law
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of Thermodynamics. Since that cannot happen, the frequency spectrum must be the
same for all black bodies.

Since the radiation spectrum does not depend on the object, we might as well take
advantage of the fact and carry out our calculations for the simplest object we can
think of.

24.3 A Simple Model

We will consider a cubic cavity with dimensions L × L × L. The sides are made of
metal and it contains electromagnetic radiation, but no matter. Radiation can only
come in and out of the cavity through a very small hole in one side. Since the radiation
must be reflected off the walls many times before returning to the hole, we can assume
that it has been absorbed along the way, making this object—or at least the hole—a
black body.

The only thing inside the cavity is electromagnetic radiation at temperature T .
We wish to find the frequency spectrum of the energy stored in that radiation, which
will also give us the frequency spectrum of light emitted from the hole.

24.4 Two Types of Quantization

In analyzing the simple model described in the previous section, we must be aware of
the two kinds of quantization that enter the problem.

As a result of the boundary conditions due to the metal walls of the container,
the frequencies of allowed standing waves are quantized. This is an entirely classical
effect, similar to the quantization of frequency in the vibrations of a guitar string.

The second form of quantization is due to quantum mechanics, which specifies
that the energy stored in an electromagnetic wave with angular frequency ω comes in
multiples of �ω (usually called photons).

The theory of electrodynamics gives us the wave equation for the electric field �E(�r)
in a vacuum.

∇2 �E(�r, t) =
1
c2

∂2 �E(�r, t)
∂t2

(24.2)

In eq. (24.2),

�∇ ≡
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
(24.3)

and

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(24.4)

The solutions to eq. (24.2) must satisfy the boundary conditions that the compo-
nent of the electric field parallel to a wall must vanish at that wall.
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Using the symmetry of the model, we find that there are solutions of the following
form.

Ex(�r, t) = Ex,o sin(ωt) cos (kxx) sin (kyy) sin (kzz) (24.5)

Ey(�r, t) = Ey,o sin(ωt) sin (kxx) cos (kyy) sin (kzz) (24.6)

Ez(�r, t) = Ez,o sin(ωt) sin (kxx) sin (kyy) cos (kzz) (24.7)

The values of Ex,o, Ey,o, and Ez,o are the amplitudes of the corresponding components
of the electric field in the cavity.

Eq. (24.5) through (24.7) were written to impose the boundary condition that the
parallel components of the electric field vanish at the walls of the cube where x, y,
or z is equal to zero. To impose the same boundary condition at the remaining walls,
where x, y, or z is equal to L, we have the conditions

kxL = nxπ (24.8)

kyL = nyπ (24.9)

kzL = nzπ (24.10)

where nx, ny, nz are integers. Only positive integers are counted, because negative
integers give exactly the same solutions.

Substituting eqs. (24.5), (24.6), and (24.7) into eq. (24.2), we find a relationship
between the frequency and the wave numbers.

k2
x + k2

y + k2
z =

ω2

c2
(24.11)

This equation can also be written in terms of the integers nx, ny, nz.(nxπ

L

)2

+
(nyπ

L

)2
+
(nzπ

L

)2
=

ω2

c2
(24.12)

Clearly the value of ω must depend on the vector �n = (nx, ny, nz), We will indicate
the �n-dependence by a subscript and solve eq. (24.12) for ω�n.

ω2
�n =
(
n2

x + n2
y + n2

z

) (πc

L

)2
(24.13)

Taking the square root to find ω�n, we obtain

ω�n =
πc

L

√
n2

x + n2
y + n2

z =
nπc

L
= ωn (24.14)

where n = |�n|.
Because the wavelengths that contribute significantly to black-body radiation are

very small in comparison with the size of the cavity, energy differences between
neighboring points in �n-space are very small. This makes the frequency spectrum
quasi-continuous and allows us to change sums over the discrete wavelengths into
integrals. Furthermore, the dependence of the frequency on �n shown in eq. (24.14) is
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rotationally symmetric, which simplifies the integrals further, as shown in the next
section.

24.5 Black-Body Energy Spectrum

The first step in calculating the black-body energy spectrum is to find the density
of states. From the solutions to the wave equation in Section 24.4, we expressed the
individual modes in terms of the vectors �n. Note that the density of points in �n-space
is one, since the components of �n are all integers.

P�n(�n) = 1 (24.15)

To find the density of states as a function of frequency, Pω(ω), integrate eq. (24.15)
over �n-space.

Pω(ω) = 2
1
8

∫ ∞

0

4πn2dn δ(ω − ncπ/L) = π

(
L

cπ

)3

ω2 (24.16)

The factor of 2 is for the two polarizations of electromagnetic radiation, and the factor
of 1/8 corrects for counting both positive and negative values of the components of �n.

Since each photon with frequency ω has energy �ω, the average energy can be
found by summing over all numbers of photons weighted by the Boltzmann factor
exp(−β�ω). Since this sum is formally identical to that for the simple harmonic
oscillator, we can just write down the answer.

〈εω〉 =
�ω

exp(β�ω) − 1
(24.17)

Note that eq. (24.17) does not include the ground-state energy �ω/2 that might be
expected for a simple harmonic oscillator. The reason is a bit embarrassing. Since
there is an infinite number of modes, the sum of the ground-state energies is infinite.
The simplest way to deal with the problem is to ignore it on the grounds that a
constant ground-state energy cannot affect the results for the radiation spectrum.
That is what other textbooks do, and that is what I will do for the rest of the book.
I suggest you do the same.

The energy density spectrum for black-body radiation as a function of the angular
frequency ω is found by multiplying the density of states in eq. (24.16) by the average
energy per state in eq. (24.17) and dividing by the volume V = L3.

uω =
(

1
V

)
π

(
L

cπ

)3

ω2 �ω

exp(β�ω) − 1
=

�

π2c3
ω3 (exp(β�ω) − 1)−1 (24.18)

Knowing the energy per unit volume contained in the black-body cavity from
eq. (24.30), and the fact that light travels with the speed of light (if you will pardon
the tautology), the energy per unit area radiated from the hole in the cavity, JU , is



286 Black-Body Radiation

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 24.1 Plot of black-body radiation spectrum, x3/(exp(x) − 1), in dimensionless units. For

comparison with the black-body spectrum in eq. (24.19), note that x = β�ω. The integral under

this dimensionless function was given as π4/15 in eq. (24.29).

clearly proportional to cU/V . The actual equation includes a geometric factor of 1/4,
the calculation of which will be left to the reader.

Multiplying uω by the factor of c/4 to derive the radiated power gives us the Planck
law for black-body radiation.

jω =
1
4
cuω =

(
�

4π2c2

)
ω3

exp(β�ω) − 1
(24.19)

Fig. 24.1 shows a plot of eq. (24.19) in dimensionless units; that is, x3/(exp(x) − 1),
where x = β�ω. The function has a maximum at xmax ≈ 2.82144.

It is very important to understand how the spectrum of black-body radiation scales
as a function of T , which will be discussed in the following subsections.

24.5.1 Frequency of Maximum Intensity

Since ω = x(kBT/�), the location of the maximum is

ωmax = xmax kBT/� ≈ 2.82144
(

kBT

�

)
(24.20)

which is proportional to the temperature, T .
The value of jω at its maximum is then

jωmax
=
(

�

4π2c2

)
(xmax kBT/�)3

exp(xmax) − 1
=
(

x3
max

4π2c2�2

)
(kBT )3

exp(xmax) − 1
(24.21)

which is proportional to T 3. Clearly, the integral over the black-body spectrum
is proportional to T 3 × T = T 4, as expected from the Stefan–Boltzmann Law in
eq. (24.31).
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24.5.2 Low-Frequency Spectrum

The low-frequency energy spectrum is found for x = β�ω << xmax ≈ 2.82. For small
values of ω, we find

jω =
1
4
cuω (24.22)

=
(

�

4π2c2

)
ω3

exp(β�ω) − 1

≈
(

�

4π2c2

)
ω3

1 − β�ω − 1

≈
(

�

4π2c2

)
ω3

β�ω

≈
(

1
4π2c2

)
ω2kBT

This expression is reasonable because the small ω region corresponds to β�ω � 1, or
kBT � �ω, which is the condition that the classical theory is valid. In this limit,

〈εn〉 → kBT (24.23)

independent of the value of ω. The factor of ω2 in eq. (24.22) comes from the factor
of ω2 in eq. (24.16), which, in turn, came from the n2 dependence of the surface of a
sphere in �n-space.

24.5.3 High-Frequency Spectrum

At high frequencies, β�ω � xmax > 1, so that we can make the approximation that
exp(β�ω) � 1 in the expression for the spectrum of black-body radiation in eq. (24.22).

jω =
(

�

4π2c2

)
ω3

exp(β�ω) − 1
≈
(

�

4π2c2

)
ω3 exp(−β�ω) (24.24)

To understand the high-frequency behavior of the energy spectrum, first note that
two factors of ω come from the n2 dependence of the surface of a sphere in �n-space,
as noted in the previous subsection. The third factor of ω comes from �ω, which is
the energy of a single photon, while the factor exp(−β�ω) gives the relatively low
probability of a high-frequency photon being excited.

Note that although the factor ω3 diverges as ω increases, the factor of
exp(−β�ω) goes to zero much more rapidly, giving the shape of the curve shown in
Fig. 24.1.
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24.6 Total Energy

The total quantum mechanical energy in the cavity radiation at temperature T is
given by summing up the average energy in each mode.

U = 2
∑

�n

〈ε�n〉 = 2
∑
�n

�ω�n (exp(β�ω�n) − 1)−1 (24.25)

The sum in eq. (24.25) is restricted to the positive octant in n-space in order to avoid
double counting, and factor of two accounts for the two polarizations of light associated
with every spatial mode. (Note that we have again omitted the ground-state energy
for the electromagnetic modes for the same dubious reason given in Section 24.5.)

We again use the fact that the frequency spectrum is a quasi-continuum to write
the sum in eq. (24.25) as an integral, which we can evaluate explicitly using the density
of states, Pω(ω), found in eq. (24.16).

U =
∫ ∞

0

〈εω〉Pω(ω)dω (24.26)

= π

(
L

cπ

)3 ∫ ∞

0

〈εω〉ω2dω

= π

(
L

cπ

)3 ∫ ∞

0

�ω

exp(β�ω) − 1
ω2dω

At this point we can simplify the equation for U by introducing a dimensionless
integration variable.

x = β�ω (24.27)

The expression for U becomes

U = πβ−1

(
L

β�πc

)3 ∫ ∞

0

dx
x3

ex − 1
(24.28)

By a stroke of good fortune, the dimensionless integral in this equation is known
exactly. ∫ ∞

0

dx
x3

ex − 1
=

π4

15
(24.29)

Noting that the volume of the cavity is V = L3, the average energy per volume in the
cavity can be given exactly.

U

V
= u =

(
π2

15�3c3

)
(kBT )4 (24.30)
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Since the energy of a black body is proportional to T 4, the specific heat per unit
volume must be proportional to T 3. This might not seem terribly significant now,
but keep it in mind for later in Chapter 25, when we discuss the specific heat of an
insulator, which is also proportional to T 3 at low temperatures.

24.7 Total Black-Body Radiation

Multiplying the total energy by a factor of c/4, as explained in Section 24.5, we find
the total black-body radiation density.

JU =
cU

4V
=

c

4

(
π2

15�3c3

)
(kBT )4 = σBT 4 (24.31)

where

σB =
π2k4

B

60�3c2
(24.32)

The constant σB is known as the Stefan–Boltzmann constant. It is named after the
Austrian physicist Joseph Stefan (1835–1893), who first suggested that the energy
radiated by a hot object was proportional to T 4, and his student Boltzmann, who
found a theoretical argument for the fourth power of the temperature. The value of
the Stefan–Boltzman constant had been known experimentally long before Planck
calculated it theoretically in 1900. Planck got the value right!

24.8 Significance of Black-Body Radiation

Perhaps the most famous occurrence of black-body radiation is in the background
radiation of the universe, which was discovered in 1964 by Arno Penzias (German
physicist who became an American citizen, 1933–, Nobel Prize 1978) and Robert
Wilson (American astronomer, 1936–, Nobel Prize 1978).

Shortly after the Big Bang, the universe contained electromagnetic radiation at
a very high temperature. With the expansion of the universe, the gas of photons
cooled—much as a gas of particles would cool as the size of the container increased.
Current measurements show that the background radiation of the universe is described
extremely well by eq. (24.19) at a temperature of 2.725K.

24.9 Problems

Problem 24.1

Generalized energy spectra

For black-body radiation the frequency of the low-lying modes was proportional to
the magnitude of the wave vector �k. Now consider a system in d dimensions for
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which the relationship between the frequencies of the modes and the wave vector is
given by

ω = Aks where A and s are constants

What is the temperature dependence of the specific heat at low temperatures?

Problem 24.2

Radiation from the sun

1. The sun’s radiation can be approximated by a black body. The surface tem-
perature of the sun is about 5800K and its radius is 0.7 × 109 m. The distance
from the earth to the sun is 1.5 × 1011 m. The radius of the earth is 6.4 × 106 m.
Estimate the average temperature of the earth from this information. Be careful
to state your assumptions and approximations explicitly.

2. From the nature of your assumptions in the previous question (rather than
your knowledge of the actual temperature), would you expect a more accurate
calculation with this data to give a higher or lower answer? Explain your reasons
clearly to obtain one bonus point per reason.

Problem 24.3

Black-body radiation

On the same graph, sketch the energy density of black body radiation u(ω) vs. the
frequency ω for the two temperatures T and 2T . (Do not change the axes so that the
two curves become identical.)

The graph should be large—filling the page, so that details can be seen. Small
graphs are not acceptable.
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The Harmonic Solid

It is not knowledge, but the act of learning, not possession but the act of getting
there, which grants the greatest enjoyment.

Johann Carl Friedrich Gauss, German mathematician (1777–1855)

In this chapter we return to calculating the contributions to the specific heat of a
crystal from the vibrations of the atoms. We have previously discussed a cruder
approximation, the Einstein model, in Section 23.11 of Chapter 23. The harmonic
solid is a model of lattice vibrations that goes beyond the Einstein model in that it
allows all the atoms in the crystal to move simultaneously.

To simplify the mathematics we will consider only a one-dimensional model in this
book. The general extension to three dimensions does bring in some new phenomena,
but it complicates the notation unnecessarily at this point. We will go into three
dimensions only for particularly simple cases, in which the extension of the theory
does not present any difficulties.

After going through the discussion in this chapter, it should be easy to follow the
mathematics of the general three-dimensional case in any good textbook on solid-state
physics.

25.1 Model of an Harmonic Solid

A one-dimensional model of a crystal lattice is described by uniformly spaced points
along a line.

Rj = ja (25.1)

The spacing a is called the lattice constant and the index j is an integer. Atoms are
located at points

rj = Rj + xj = ja + xj (25.2)

where xj is the deviation of the position of an atom relative to its associated lattice
point.
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To write an expression for the kinetic energy we will need the time derivative of
xj which we will indicate by a dot over the variable.

ẋj ≡ ∂xj

∂t
=

∂rj

∂t
= ṙj (25.3)

The energy of a microscopic state is given by the following expression.

E =
1
2
m
∑

j

ṙ2
j +

1
2
K
∑

j

(a + rj − rj+1)2 (25.4)

=
1
2
m
∑

j

ẋ2
j +

1
2
K
∑

j

(xj − xj+1)2

The potential energy is a minimum for nearest-neighbor separations equal to the lattice
constant, a, and is quadratic in the deviations from this optimum separation. As we
will see, it is the assumption of a quadratic potential energy that makes this model
tractable.

The general strategy to solve for the properties of the harmonic crystal is to
transform the problem from N interacting particles to N independent simple harmonic
oscillators, which enables us to factorize the partition function as discussed in Section
23.7. Once we have made this transformation, we need only copy the results for
quantum SHOs from Section 23.10, and we have solved for the properties of the
harmonic solid.

25.2 Normal Modes

The key to reducing the problem to independent oscillators is to Fourier transform1

the position variables to find the normal modes. The Fourier transform of the positions
of the particles is given by

xk = N−1/2
∑

j

xj exp(−ikRj) (25.5)

where k is the (one-dimensional) wave vector or wave number. We can anticipate that
the wave number is related to the wavelength λ by

k =
2π

λ
(25.6)

An obvious property of the Fourier transformed variables xk is that

x−k = x∗
k (25.7)

where the superscript ∗ indicates the complex conjugate.

1Jean Baptiste Joseph Fourier, French mathematician and physicist (1768–1830).
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25.2.1 Inverse Fourier Transformation

The inverse of the Fourier transformation in eq. (25.5) is

xj = N−1/2
∑

k

xk exp(ikRj) (25.8)

which we can confirm by direct substitution.

xk = N−1/2
∑

j

xj exp(−ikRj) (25.9)

= N−1/2
∑

j

N−1/2
∑
k′

xk′ exp(ik′Rj) exp(−ikRj)

=
∑
k′

xk′N−1
∑

j

exp(i(k′ − k)Rj)

=
∑
k′

xk′δk,k′ = xk

The identity, ∑
j

exp(i(k′ − k)Rj) = Nδk,k′ (25.10)

which was used in deriving eq. (25.9), will often prove useful in statistical mechanics.
The validity of eq. (25.10) can be easily shown.

∑
j

exp (i(k′ − k)Rj) =
∑

j

exp
(

i(n′ − n)
2π

L
ja

)
(25.11)

=
∑

j

exp
(

i2π(n′ − n)
j

N

)

If n′ = n, so that k′ = k, then the sum is clearly equal to N . If n′ − n = 1, the sum
is simply adding up the N complex roots of −1. Since they are uniformly distributed
around the unit circle in the complex plane, they sum to zero. If n′ − n is any other
integer (excepting a multiple of N), the angle between each root is multiplied by the
same amount, they are still distributed uniformly, and they still sum to zero.

To complete the Fourier transform, we must specify the boundary conditions. There
are two kinds of boundary condition in general use. Since they each have their own
advantages, we will discuss them both in detail.

25.2.2 Pinned Boundary Conditions

Pinned boundary conditions for the harmonic solid are similar to the boundary
conditions we used for black-body radiation. In that problem, the transverse electric
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field vanished at the boundaries of the metal box. For pinned boundary conditions,
the vibrations vanish at the boundaries of the system.

To implement pinned boundary conditions, first extend the number of atoms in the
model from N to N + 2 by adding atoms with indices 0 and N + 1. These two atoms
enforce the boundary conditions by being fixed (‘pinned’) at the positions R0 = 0 and
RN+1 = (N + 1)a.

The two solutions exp(ikRj) and exp(−ikRj) can be combined to give xk ∝
sin(kRj) to satisfy the boundary condition that x0 = 0 at R0 = 0. From the other
boundary condition that xN+1 = 0 at RN+1 = (N + 1)a = L, we need

kL = k(N + 1)a = nπ (25.12)

or

k = k(n) =
nπ

L
(25.13)

for some integer n.
Since we only have N atoms in the system, we only expect to find N independent

solutions. If we define

K ≡ 2π

a
(25.14)

we can see that k and k + K correspond to the same solution.

sin((k + K)Rj) = sin(kRj + jaK) (25.15)

= sin
(

kRj + ja
2π

a

)

= sin (kRj + 2πj)

= sin(kRj)

Adding any integer multiple of K to k also produces the same solution.
For calculations, the standard choice for pinned boundary conditions is to use only

those solutions corresponding to values of n from 1 to N .

25.2.3 Periodic Boundary Conditions

The other possible boundary conditions are periodic. In one dimension, this might be
thought of as bending the line of atoms into a circle and tying the ends together, so
that

Rj+N = Rj (25.16)

Note that the length of a system with periodic boundary conditions is

L = Na (25.17)

in contrast to the length of (N + 1)a for pinned boundary conditions.
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In two dimensions, a rectangular lattice with periodic boundary conditions can be
viewed as a torus. It is rather diffcult to visualize periodic boundary conditions in
three dimensions (it is called a Klein bottle), but the mathematics is no more difficult.

The great advantage of periodic boundary conditions is that the system becomes
invariant under translations of any multiple of the lattice constant a. The system has
no ends in one dimension (and no borders or surfaces in two or three dimensions).

For periodic boundary conditions, we will take solutions of the form exp(ikRj).
The condition that the system is periodic means that

exp (ik(Rj + L)) = exp(ikRj) (25.18)

which implies that

kL = 2nπ (25.19)

or

k = k(n) =
2nπ

L
(25.20)

for some integer value of n. Note that the values of k given in eq. (25.20) for periodic
boundary conditions are spaced twice as far apart as the values of k for pinned
boundary conditions given in eq. (25.13).

As was the case for pinned boundary conditions, the solution corresponding to k
is identical to the solution corresponding to k + K, where K is given by eq. (25.14),
we can confirm that k and k + K correspond to the same solution.

exp (i(k + K)Rj) = exp
(

ikRj + i
2π

a
ja

)
(25.21)

= exp (ikRj + i2πj)

= exp (ikRj)

In eq. (25.21), do not forget that j is an integer index, while i =
√−1.

Note that n = 0 is a solution for periodic boundary conditions, while it is not for
pinned boundary conditions because sin(0) = 0. The solution for n = 0 corresponds
to moving all atoms together in the same direction.

It is customary to take both positive and negative values of k(n), so that the central
values of n we will use are:

n = 0,±1,±2, . . . ,±(N − 1)/2 for N odd (25.22)

and

n = 0,±1,±2, . . . ,±(N/2 − 1), N/2 for N even (25.23)
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For even values of N , the state corresponding to −N/2 is identical to the state
corresponding to N/2.

For periodic boundary conditions, the values of k lie at symmetric points in k-space,
and the only independent states lie between k = −K/2 and k = K/2. This region is
called the Brillouin Zone in honor of Léon Nicolas Brillouin (French physicist, 1889–
1969). All information in the Brillouin Zone is repeated throughout k-space with a
periodicity of K = 2π/a.

When you take a course in solid state physics, you will find that three-dimensional
Brillouin Zones can be rather complicated—and much more interesting. They are
essential in understanding important properties of real materials, but they go
beyond the scope of this book.

25.3 Transformation of the Energy

If we apply the Fourier transform in eq. (25.8) to the energy of the harmonic crystal
given in eq. (25.4), we find that each Fourier mode is independent. This is the great
simplification that justifies the bother of introducing Fourier transforms, because it
enables us to factorize the partition function.

We will treat the kinetic and potential energy terms separately, beginning with the
kinetic terms. The kinetic terms are, of course, already diagonal before the Fourier
transform, but we have to demonstrate that they are also diagonal after the Fourier
transform.

25.3.1 Kinetic Energy

Using the time derivative of eq. (25.8).

ẋj = N−1/2
∑

k

ẋk exp(ikRj) (25.24)

we can carry out a Fourier transform of the kinetic energy term in eq. (25.4).

K.E. =
1
2
m
∑

j

ẋ2
j =

1
2
m
∑

j

ẋj ẋj

=
1
2
m
∑

j

(
N−1/2

∑
k

ẋk exp(ikRj)

)(
N−1/2

∑
k′

ẋ′
k exp(ik′Rj)

)

= N−1 1
2
m
∑

k

∑
k′

ẋkẋk′
∑

j

exp(i(k + k′)Rj)
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= N−1 1
2
m
∑

k

∑
k′

ẋkẋk′Nδk+k′,0

=
1
2
m
∑

k

ẋkẋ−k =
1
2
m
∑

k

|ẋk|2 (25.25)

For the last equality, we have used eq. (25.7).

25.3.2 Potential Energy

For the potential energy term in eq. (25.4), separate the factors of (xj − xj+1) in the
sum and use eq. (25.24) to introduce xk.

P.E. =
1
2
K
∑

j

(xj − xj+1)2 =
1
2
K
∑

j

(xj − xj+1)(xj − xj+1)

=
1
2
K
∑

j

(
N−1/2

∑
k

xk (exp(ikRj) − exp(ikRj+1))

)

×
(

N−1/2
∑
k′

xk′ (exp(ik′Rj) − exp(ik′Rj+1))

)

=
1
2
K
∑

j

(
N−1/2

∑
k

xk exp(ikja) (1 − exp(ika))

)

×
(

N−1/2
∑
k′

xk′ exp(ik′ja) (1 − exp(ik′a))

)
(25.26)

Next, collect terms and simplify using the identity eq. (25.10).

P.E. =
1
2
KN−1

∑
k

∑
k′

xkxk′ (1 − exp(ika)) (1 − exp(ik′a))

×
∑

j

exp(i(k − k′)ja)

=
1
2
K
∑

k

xkx−k (1 − exp(ika)) (1 − exp(−ika))

=
1
2

∑
k

K(k)|xk|2 (25.27)

The function

K(k) = K (1 − exp(ika)) (1 − exp(−ika)) (25.28)

gives the effective spring constant for the mode with wave number k.
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Adding eqs. (25.25) and (25.27) together, we find the energy of the harmonic crystal
from eq. (25.4) in terms of the Fourier transformed variables.

E =
1
2
m
∑

k

|ẋk|2 +
1
2

∑
k

K(k)|xk|2 =
∑

k

(
1
2
m|ẋk|2 +

1
2
K(k)|xk|2

)
(25.29)

The problem has been transformed from one with N variables (the positions of
the atoms) to N problems, each with a single variable (the amplitude of the mode xk

with wave number k). Each mode represents a simple harmonic oscillator with mass
m (the same as the original atomic mass) and spring constant K(k). For each mode,
the square of the frequency is given by the usual ratio of the spring constant to the
mass.

ω2(k) =
K(k)

m
(25.30)

25.4 The Frequency Spectrum

To analyze the spectrum of frequencies, ω(k), we can rewrite eq. (25.28) for K(k) in
a more convenient form.

K(k) = K (1 − exp(ika)) (1 − exp(−ika)) (25.31)

= K (1 − exp(ika) − exp(−ika) + 1)

= 2K (1 − cos(ka))

= 4K sin2(ka/2)

The angular frequency is then given by

ω2(k) =
4K sin2(ka/2)

m
(25.32)

or

ω(k) = 2ω̃
∣∣∣∣sin
(

ka

2

)∣∣∣∣ (25.33)

where ω̃ =
√

K/m. This spectrum is plotted in Fig. 25.1.
For small wave number (k � π/a), the frequency of a mode in eq. (25.33) becomes

linear in the wave number k.

ω(k) = 2ω̃| sin(ka/2)| ≈ ω̃ka (25.34)

The speed of a sound wave v(k) is given by the product of the frequency ν(k) times
the wavelength for long wavelengths (small k). From eq. (25.34), we see that the speed
of a sound waves is a constant.
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Fig. 25.1 Frequency spectrum of a one-dimensional harmonic solid, as given in eq. (25.33).

ω(k)
k

=
2πν(k)
2π/λ

= ν(k)λ = v(k) = a

√
K

m
(25.35)

The linearity of the function ω(k) can also be seen near the origin in Fig. 25.1.
The generalization of these calculations to a three-dimensional harmonic crystal

is not particularly difficult, although the mathematics becomes rather more messy
because of the necessary introduction of vector notation. The three-dimensional form
of the Brillouin Zone is also somewhat more complicated. However, the generalization
of the frequency spectrum to three dimensions has a particularly simple form.

ω2(�k) = 2K
∑

�δ

sin2

(
�k · �δ

2

)
(25.36)

The sum in this equation goes over the vectors �δ connecting a site to its nearest
neighbors. Eq. (25.36) is valid for all lattices.

25.5 The Energy in the Classical Model

Since the SHOs in eq. (25.29) are not particles that can move from one system to
another, the classical partition function given below does not contain a factor of 1/N !.

Zclass =
1

hN

∫
dp

∫
dq exp (−βH) (25.37)

The limits for the integrals in eq. (25.37) have been omitted (which is not usually a
good idea) because they all go from −∞ to ∞.
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Because of the diagonal form of the Fourier transformed energy, the partition
function factors. Since all the integrals are gaussian, we can evaluate them immediately.

Zclass =
∏
k

1
h

[
(2πmkBT )3/2 (2πkBT/K(k))3/2

]
(25.38)

Simplifying this expression, we find

Zclass =
∏
k

[
2π

h
kBT

(
m

K(k)

)1/2
]

=
∏
k

(β�ω(k))−1 (25.39)

where

ω(k) =

√
K(k)

m
(25.40)

is the frequency of the k-th mode.
As usual, the average energy is found by taking a derivative with respect to β.

U =
∂(βF )

∂β
(25.41)

= −∂(ln Zclass)
∂β

= − ∂

∂β

[
−3N lnβ −

∑
k

ln (�ω(k))

]

= 3N
1
β

= 3NkBT

As expected, the specific heat has the constant value of 3kB , which is the Law of
Dulong and Petit.

For a classical harmonic crystal, the spectrum of frequencies as a function of the
wave number k is unimportant for equilibrium properties. In the next section we will
see that this is not the case for a quantum mechanical harmonic crystal.

25.6 The Quantum Harmonic Crystal

Formal expressions for the quantum mechanical properties of a harmonic lattice are
obtained just as easily as the classical properties—though their evaluation is rather
more challenging. Because the system factorizes into N SHOs, the partition function
is found by inserting the results from Section 23.10.

ZQM =
∏
k

[
1
2

�ω(k) + kBT ln(1 − exp(−β�ω(k)))
]

(25.42)

The energy of the system is just the sum of the energies of the individual modes,
which can be confirmed by taking the negative logarithmic derivative of eq. (25.42)
with respect to β, as in eq. (23.11).



Debye Approximation 301

UQM =
∑

k

[
1
2

�ω(k) +
�ω(k)

exp(β�ω(k)) − 1

]
(25.43)

Because the wave numbers are closely spaced, eq. (25.43) can be turned into an integral
without introducing a significant error.

UQM =
L

π

∫ π/a

−π/a

dk

[
1
2

�ω(k) +
�ω(k)

exp(β�ω(k)) − 1

]
(25.44)

For high temperatures, kBT � �ωk for all modes, the average energy of every mode
goes to kBT , and we recover the classical answer and the Law of Dulong and Petit.

For low temperatures the situation is more complicated, because different modes
have different frequencies. The contribution of each mode to the specific heat depends
on the ratio �ωk/kBT ; when the ratio is small, the contribution to the specific heat
is kB , but when the ratio is large, the contribution becomes very small. As the
temperature is lowered, the contributions to the specific heat from a larger fraction of
the modes becomes negligible, and the total specific heat goes to zero.

To calculate how the specific heat of the harmonic crystal goes to zero, we need the
frequency spectrum found in Section 25.4. The formal solution for the specific heat is
found by substituting eq. (25.33) into eq. (25.43) and differentiating with respect to
temperature. This procedure is easily carried out numerically on a modern computer.

On the other hand, it turns out to be both useful and enlightening to develop an
approximation that allows us to investigate the low-temperature behavior analytically,
as we will do in the following section on the Debye approximation.

25.7 Debye Approximation

We mentioned above that the Brillouin Zone is very simple in one dimension; it is just
the region from k = −π/a to π/a. In three dimensions it takes on more complicated
forms that reflect the symmetry of the particular lattice: face-centered cubic, body-
centered cubic, hexagonal, and so on. This makes it necessary to perform a three-
dimensional integral over the Brillouin Zone.

When the theory of the quantum mechanical harmonic lattice was first developed
in the early part of the twentieth century, computers were non-existent; all calculations
had to be accomplished by hand. This made it very important to simplify calculations
as much as possible, and led to the approximation that we will discuss in this section.

However, even today, when we can easily and rapidly evaluate eq. (25.44) and its
generalization to three dimensions on a computer, there is still considerable value in
simplifying the calculation as an aid to understanding its significance. Such simplifying
approximations will also show the relationship of the harmonic crystal to black-body
radiation, which might otherwise be much less obvious.

The Debye approximation—named after its inventor, the Dutch physicist Peter
Joseph William Debye (born Petrus Josephus Wilhelmus Debije, 1884–1966)—can
be viewed as a kind of interpolation between the known high- and low-temperature
regions.
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For low temperatures, only low-energy modes will be excited significantly because
the high-energy modes will be cut off by the exponential term exp(β�ω(k)) in the
denominator of the integrand in eq. (25.44). Therefore, we only need to look at the low-
frequency region of the energy spectrum. As shown in Section 25.4, the low-frequency
spectrum is given by a simple linear relation.

ε(�k) = �ω(�k) ≈ �v
∣∣∣�k∣∣∣ (25.45)

In this equation, v is the speed of sound, and we have generalized the result to an
arbitrary number of dimensions.

Eq. (25.45) is a very nice result because it is spherically symmetric. If the Brillouin
Zone were also spherically symmetric, we could use that symmetry to reduce the three-
dimensional integral for the energy to a one-dimensional integral. For this reason,
Debye introduced an approximation that does exactly that. He approximated the
energy spectrum by ε(�k) = �v|�k| and the true shape of the Brillouin Zone by a sphere!

It’s easy to see how Debye got away with this approximation at low temperatures.
Only the low-energy modes made a significant contribution to the average energy, and
eq. (25.45) was an excellent approximation for those modes. The high-energy modes
that would be affected by true functional form of ω(�k) and the shape of the Brillouin
Zone did not contribute anyway, so that distortion did not matter.

However, at high temperatures neither of these two arguments is valid. The high-
energy modes are important, and they do not have the form given in eq. (25.45).
Fortunately, a different argument comes into play to save the approximation.

Recall that for high temperatures, when kBT � �ω(�k), the energy of each mode is
just given by the classical value of kBT . Since each mode contributes kBT , the energy
spectrum is irrelevant; the only thing that matters is how many modes there are. For
this reason, Debye fixed the size of his (approximate) spherical Brillouin Zone so that
it had exactly 3N modes—the same as the true Brillouin Zone.

The radius of the approximate Brillouin Zone is most easily found by going back
into n-space, in which the points are distributed uniformly with a density equal to one.
Each point in the positive octant (nx, ny, nz are all positive) represents three modes
(one for each polarization direction). The total number of modes must equal 3N .

3N =
3
8

∫ nD

0

4πn2dn =
3
8

4
3
πn3

D =
1
2
πn3

D (25.46)

The Debye radius in �n-space is

nD =
(

6N

π

)1/3

(25.47)

This also gives us results for the corresponding values of the Debye wave number and
the Debye energy.
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kD =
π

L

(
6N

π

)1/3

(25.48)

εD =
π

L

(
6N

π

)1/3

v (25.49)

Note that v in eq. (25.49) is the speed of sound, as in eq. (25.45).
Since the ground-state energy plays no role in the thermodynamics of the harmonic

solid, we will ignore it and write the energy in the Debye approximation for a three-
dimensional harmonic crystal as a one-dimensional integral.

UDebye =
3π

2

∫ nD

0

n2dn
�ω(n)

exp(β�ω(n)) − 1
(25.50)

At this point we will follow the same procedure for simplifying the integral that we
used in Section 24.6 for black-body radiation. We define a dimensionless integration
variable to transform the integral in eq. (25.50) to a more convenient form.

x = β�ω(n) =
(

π�v

LkBT

)
n (25.51)

The upper limit of the integral in eq. (25.50) will become

xd =
ΘD

T
(25.52)

where the Debye temperature, ΘD, is given by

ΘD =
�v

kB

(
6π2N

L3

)1/3

(25.53)

Using these substitutions, eq. (25.50) takes on the following form.

UDebye =
3π

2

(
LkBT

π�v

)3

kBT

∫ ΘD/T

0

dx x3 (exp(x) − 1)−1 (25.54)

=
3L3(kBT )4

2π2�3v3

∫ ΘD/T

0

dx x3 (exp(x) − 1)−1

The great advantage of eq. (25.54) when Debye first derived it was that it could be
evaluated numerically with pencil and paper (and a bit of effort). However, even today
Debye’s equation remains very useful for gaining insights into the behavior of a crystal
at both high and low temperatures, as we will investigate in the following subsections.

25.7.1 Debye Approximation for T � ΘD

At high temperatures we expect the energy to go to U ≈ 3NkBT , because that was
how we selected the size of the spherical Brillouin Zone. But it is always good to check
to make sure that we did not make an error in the calculation.
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For high temperatures, ΘD/T � 1, so that the upper limit of the integral in
eq. (25.54) is small. For small values of x in the integrand, we can make the
approximation

x3 (exp(x) − 1)−1 ≈ x3 (1 + x − 1)−1 = x2 (25.55)

which is easy to integrate. Inserting this approximation into eq. (25.54), we find

UDebye ≈ 3L3(kBT )4

2π2�3v3

∫ ΘD/T

0

dx x2 (25.56)

≈ 3L3(kBT )4

2π2�3v3

1
3

(
ΘD

T

)3

≈ 3L3(kBT )4

2π2�3v3

1
3

(
�v

kB

(
6π2N

L3

)1/3 1
T

)3

≈ L3(kBT )4

2π2�3v3

�
3v3

k3
B

(
6π2N

L3T 3

)

≈ 3NkBT

Since the Debye temperature was chosen to include 3N modes in the spherical
approximate Brillouin Zone, the high-temperature expression for the energy is as
expected, and the specific heat is 3kB , consistent with the Law of Dulong and Petit.

25.7.2 Debye Approximation for T � ΘD

For low temperatures, ΘD/T � 1, and the upper limit of eq. (25.54) is large. Since
the integrand goes to zero as x3 exp(−x), taking the upper limit to be infinite is a
good approximation.

UDebye ≈ 3L3(kBT )4

2π2�3v3

∫ ∞

0

dx x3 (exp(x) − 1)−1 (25.57)

The integral in eq. (25.57) should be familiar. It is exactly the same as the integral
we found in eq. (24.29) during the analysis of black-body radiation. This is not a
coincidence, as discussed below.

∫ ∞

0

dx
x3

ex − 1
=

π4

15
(25.58)

Inserting the value of the integral into eq. (25.57), we find the low-temperature
behavior of the energy of the harmonic lattice in closed form.
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UDebye ≈ 3L3(kBT )4

2π2�3v3

π4

15
(25.59)

≈ L3 π2

10�3v3
(kBT )4

≈ V
π2

10�3v3
(kBT )4

The energy per unit volume is then given by

U

V
= u =

(
π2

10�3v3

)
(kBT )4 (25.60)

The energy of the harmonic crystal at low temperatures, for which the Debye
approximation is accurate, is very similar to the energy of black-body radiation. Recall
eq. (24.30) from Chapter 24 for the energy per unit volume of black-body radiation.

U

V
= u =

(
π2

15�3c3

)
(kBT )4 (25.61)

The form of eqs. (25.60) and (25.61) is the same, because for both black-body
radiation and the low-temperature harmonic crystal, the energy spectrum is linear in
the wave number: ω = vk for the harmonic solid, and ω = ck for black-body radiation
(light).

There are only two differences between eq. (25.60) for the low-temperature behavior
of the harmonic solid and eq. (24.30) for black-body radiation. The expression for the
harmonic crystal contains the speed of sound v, instead of the speed of light c, and
the factor in the denominator is 10 instead of 15 because there are three polarizations
for sound, but only two for light.

From eq. (25.60) we see that the energy of a harmonic crystal is proportional to
T 4, which is analogous to the T 4 factor in the Stefan–Boltzmann Law, eq. (24.31).
Taking a derivative of the energy with respect to temperature, we see that the specific
heat is proportional to T 3, which is observed to be the correct behavior of insulating
crystals at low temperatures.

The specific heats of metallic crystals, on the other hand, are linear in the tem-
perature. The origin of this difference between conductors and insulators will be
discussed in Chapter 28.

25.7.3 Summary of the Debye Approximation

There are three steps in deriving the Debye approximation.

1. Replace the true energy spectrum with an approximate spectrum that is linear
in the wave number¡, k, and spherically symmetric: ε(�k) = �v|�k|.

2. Replace the true Brillouin Zone by a spherically symmetric Brillouin Zone.
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3. Choose the size of the spherically symmetric Brillouin Zone so that it contains
exactly N k-values and 3N modes.

The Debye approximation is excellent at both high and low temperatures. Do not
be fooled, however: in between, it is only mediocre. The qualitative behavior of the
contributions to the specific heat from lattice vibrations in real crystals is monotoni-
cally increasing with temperature, starting from T 3-behavior at low temperatures and
going to the constant value 3kB (Law of Dulong and Petit) at high temperatures. The
detailed form of the function depends on details of the true energy spectrum and the
shape of the true Brillouin Zone. Fortunately, the full, three-dimensional integrals are
easy to do on a computer, so that we need not rely on the Debye approximation as
much as researchers did in the middle of the last century.

25.8 Problems

Problem 25.1

The harmonic crystal

1. Show that for an harmonic crystal the integral∫ ∞

0

[CV (∞) − CV (T )] dT

is exactly equal to the zero-point energy of the solid.
2. Interpret the result graphically. It might help to relate this result to an earlier

assignment on the properties of quantum SHOs.

Problem 25.2

The harmonic crystal with alternating spring constants

Most crystals contain more than one kind of atom. This leads to both quantitative
and qualitative differences in the vibration spectrum from the results derived in class.
These differences occur whenever the periodicity is altered, whether by changing the
masses of the atoms or changing the spring constants.

As an example of the kinds of differences that can arise when the periodicity changes,
consider the problem of a one-dimensional lattice with alternating spring constants
K1 and K2. For simplicity, you can assume that all the masses are equal to m.

1. If the distance between atoms is a, the periodicity is 2a. What is the size of the
Brillouin Zone?

2. Calculate the vibration spectrum of the lattice. You might find it more convenient
to write down equations of motion for the two sublattices.

3. Sketch the vibration spectrum in the Brillouin Zone based on your calculations.
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4. Sometimes the vibration spectrum of a crystal with more than one kind of atom
is approximated by a combination of an Einstein model and a Debye model.
Explain why this might make sense and, give appropriate parameters for such
a description in the present case. In answering this question, consider the high-
and low-temperature behavior of the specific heat of this model.

Problem 25.3

The harmonic crystal with alternating masses

Most crystals contain more than one kind of atom. This leads to both quantitative
and qualitative differences in the vibration spectrum from the results derived in class.
These differences occur whenever the periodicity is altered, whether by changing the
masses of the atoms or changing the spring constants.
As an example of the kinds of differences that can arise when the periodicity changes,
consider the problem of a one-dimensional lattice with alternating masses m1 and m2.

1. If the distance between atoms is a, the periodicity is 2a. What is the size of the
Brillouin Zone?

2. Calculate the vibration spectrum of the lattice. You might find it more convenient
to write down equations of motion for the two sublattices.

3. Sketch the vibration spectrum in the Brillouin Zone based on your calculations.
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Ideal Quantum Gases

Out of perfection nothing can be made. Every process involves breaking
something up.

Joseph Campbell

This chapter discusses the theory of ideal quantum gases. It develops general equations
that will be valid for gases that consist of either bosons or fermions. Since the
consequences of these equations are both non-trivial and very different for the two
cases of bosons and fermions, the details of each of these cases will be dealt with in
subsequent chapters.

This chapter will also discuss the interesting case of a quantum gas of distin-
guishable particles. Although all atoms are either bosons or fermions, and therefore
indistinguishable, there are nevertheless real systems that are composed of distinguish-
able particles. In particular, colloidal particles can each be composed of about 109

molecules. The number of molecules in each particle will vary, as will the arrangement
and number of each type of molecule. In short, while the particles in a colloid might be
similar in size and composition, they do not have identical properties and they are not
indistinguishable. While the properties of colloids can usually be obtained accurately
using classical statistical mechanics, it is also of interest to see how quantum mechanics
might affect the results.

We begin in the next section by discussing many-particle quantum states, which
are needed to describe a macroscopic quantum system.

26.1 Single-Particle Quantum States

As is the case for most of statistical mechanics, we would like to put the theory of
ideal quantum gases into a form that allows us to factorize the partition function. For
ideal gases, that points to building up the macroscopic state in terms of single-particle
states, which will then lead to such a factorization.

Consider a quantum ideal gas in a box of volume V . For simplicity, we will assume
that the box is cubic, with length L, so that V = L3. The sides of the box will be
assumed to be impenetrable, also for simplicity.
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For quantum ideal gases, we can write the Hamiltonian of a single particle of mass
m as

H =
|�p|2
2m

= − �
2

2m
�∇2 (26.1)

where

�∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
(26.2)

The eigenfunctions of eq. (26.1) can be written in a form that is very similar to
that of the electric field in eq. (24.5) for the black-body problem, but is even simpler
because the wave function ψ is a scalar, while the electric field is a vector.

ψ�k(�r) =

√
8
L3

sin (kxx) sin (kyy) sin (kzz) (26.3)

(The derivation of the normalization constant is left to the reader.)
The wave numbers in eq. (26.3) are determined by the condition that the wave

function vanishes at the boundaries.

kx =
nxπ

L
(26.4)

ky =
nyπ

L
(26.5)

kz =
nzπ

L
(26.6)

If the values of nx, ny, and nz are integers, the boundary conditions are fulfilled.
Since the overall sign of the wave function is unimportant, negative values of these
integers do not represent distinct states; only non-zero, positive integers represent
physically distinct states. The wave equation can also be written in terms of the
values of �n = {nx, ny, nz}.

ψ�n(�r) =

√
8
L3

sin
(nxπ

L
x
)

sin
(nyπ

L
y
)

sin
(nzπ

L
z
)

(26.7)

The energy eigenvalues for a single-particle state are easily found.

Hψ�k(�r) = − �
2

2m
�∇2ψ�k(�r) =

�
2

2m

(
k2

x + k2
y + k2

z

)
ψ�k(�r) = ε�kψ�k(�r) (26.8)

ε�k =
�

2

2m

(
k2

x + k2
y + k2

z

)
=

�
2π2

2mL2

(
n2

x + n2
y + n2

z

)
= ε�n (26.9)

(The symbol ε will be reserved for the energies of single-particle states, while E will
be used for the energy of an N -particle state.)

If we define

k2 = k2
x + k2

y + k2
z (26.10)
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and

n2 = n2
x + n2

y + n2
z (26.11)

we can express eq. (26.9) more compactly.

ε�k =
�

2

2m
k2 =

�
2π2

2mL2
n2 = ε�n (26.12)

Eq. (26.9) gives the single-particle energy eigenvalues for a particle in a three-
dimensional, cubic box with sides of length L. This is the case on which we will
concentrate. However, since we can preserve generality with little cost, I will replace
the quantum number vector �n with a general quantum number α for most of the rest
of this chapter. This means that the equations in this chapter will be valid for any
system of non-interacting particles, even if those particles are moving in an external
potential.

The energy eigenstates in eq. (26.9) are often called ‘orbitals’ for historical reasons;
the early work on fermions concentrated on electrons orbiting around a nucleus,
which led to the use of the term. It might seem strange to see the term ‘orbitals’
when nothing is orbiting, but tradition is tradition. I will refer to them as single-
particle states, which is less compact, but also (I believe) less confusing.

26.2 Density of Single-Particle States

Just as we needed the photon density of states to calculate the properties of black
bodies, we will need the single-particle density of states to calculate the properties of
a system of particles.

The density of states in �n-space is easy to find. Since there is one state at every
point with integer components, the density of states is 1. To calculate the density of
states as a function of energy, we make a transformation using a Dirac delta function,
following the methods developed in Chapter 5.

D(ε) =
∫ ∞

0

dnx

∫ ∞

0

dny

∫ ∞

0

dnz δ(ε − ε�n) (26.13)

=
1
8

∫ ∞

0

4πn2dn δ

(
ε − �

2π2

2mL2
n2

)

=
π

4

(
2mL2

�2π2

)3/2 ∫ ∞

0

x1/2dx δ (ε − x)

=
V

4π2

(
2m

�2

)3/2

ε1/2
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In the third line of eq. (26.13) we introduced a new variable of integration.

x =
(

�
2π2

2mL2

)
n2 (26.14)

In the fourth line of eq. (26.13) we replaced L3 by the volume of the system, V = L3.
Eq. (26.13) is valid for non-interacting fermions, bosons, or distinguishable particles

(without spin). It will play a central role in Chapters 27, 28, and 29.

26.3 Many-Particle Quantum States

An N -particle wave function can be constructed from eq. (26.3) by multiplying single-
particle wave functions.

ψN =
N∏

j=1

ψαj
(�rj) (26.15)

In this equation, αj represents the quantum number(s) that describe the wave function
for the j-th particle.

Eq. (26.15) is a correct wave function for distinguishable particles, and we will
return to it in Section 26.9. However, for indistinguishable particles, the wave function
must be symmetrized for Bose–Einstein statistics1 (bosons) or anti-symmetrized for
Fermi–Dirac statistics2 (fermions).

The wave function for bosons can be written as a sum over all permutations, P ,
of the assignments of particles to wave functions in the expression in eq. (26.15).

ψBE
N = XBE

∑
P

P

⎡
⎣ N∏

j=1

ψαj
(�rj)

⎤
⎦ (26.16)

The normalization constant, XBE , can be calculated, but does not play a significant
role and will be left to the interested reader.

The wave function for fermions can be represented by a similar expression if we
include a factor of (−1)P , in which the exponent denotes the number of two-particle
exchanges needed to construct the permutation P .

ψFD
N = XFD

∑
P

(−1)P P

⎡
⎣ N∏

j=1

ψαj
(�rj)

⎤
⎦ (26.17)

XFD is the normalization constant for Fermi–Dirac statistics, which will also be left
to the reader.

1Satyendranath Bose (1894–1974), Indian physicist, and Albert Einstein (1879–1956), German, Swiss,
Austrian, and American physicist, Nobel Prize 1921.

2Enrico Fermi (1901–1954), Italian physicist, Nobel Prize 1938, and Paul Adrien Maurice Dirac (1902–
1984), British physicist, Nobel Prize 1933.
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Note that the many-particle wave function for fermions vanishes if two or more
particles are in the same single particle state (αi = αj for i �= j). Each single-particle
state can either be empty or contain one particle. There is no such restriction for
bosons, and any number of bosons can occupy a single-particle state.

The Hamiltonian of an N -particle system of independent particles is just

HN =
N∑

j=1

Hj (26.18)

where Hj is the single-particle Hamiltonian for the j-th particle.
The N -particle eigenvalue equation is then

HN ψN = EψN =
N∑

j=1

εαj
ψN (26.19)

for bosons, fermions, or distinguishable particles.
To construct the Boltzmann factor we need to apply the operator exp(−βHN ) to

the wave function. Fortunately, this is easy. Simply expand the exponential in a series
in powers of HN , apply the eigenvalue equation, eq. (26.19), and sum the power series
in E.

exp(−βHN )ψN = exp(−βE)ψN = exp

⎛
⎝−β

N∑
j=1

εαj

⎞
⎠ψN (26.20)

26.4 Quantum Canonical Ensemble

In principle, we could go to the canonical ensemble and sum the Boltzmann factor in
eq. (26.20) over all N -particle states, just as we did for black bodies in Chapter 24
and harmonic solids in Chapter 25. Unfortunately, if we try to do this the canonical
partition function does not factor. The difficulty has to do with enumerating the states.
If the total number of particles is fixed, we can only put a particle in one state if we
simultaneously take it out of some other state. We did not run into this problem
for either black bodies or harmonic solids because neither photons nor phonons are
conserved.

To be able to sum freely over the number of particles in each single-particle state—
and thereby factorize the partition function—we need to introduce a reservoir that can
exchange particles with the system of interest. This brings us to the grand canonical
ensemble, which is the subject of the next section.

26.5 Grand Canonical Ensemble

The grand canonical partition function was introduced for classical statistical mechan-
ics in Sections 20.1 and 20.2. The equations describing the quantum grand canonical
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ensemble are the same as those for the classical case, as long as we now interpret
Ω(E,N) to mean the degeneracy of an N -particle quantum state with energy E.

Eq. (20.9) gives the quantum mecanical grand canonical probability distribution
for E and N .

P (E,N) =
1
ZΩ(E, V,N) exp [−βE + βμN ] (26.21)

and eq. (20.10) gives us the quantum grand canonical partition function.

Z =
∞∑

N=0

∑
E

Ω(E, V,N) exp [−βE + βμN ] (26.22)

The sum over E in eq. (26.22) denotes the sum over all energy eigenstates of the
N -particle system. It replaces the integral over the continuum of energies in the
classical case that was used in eq. (20.10).

For a quantum system of non-interacting particles, the N -particle energies are
given by

E =
N∑

j=1

εαj
(26.23)

so that

exp(−βE + μN) = exp(−β
N∑

j=1

(εαj
− μ)) =

N∏
j=1

exp(−β(εαj
− μ))) (26.24)

We can also rewrite eq. (26.22) in terms of sums over the eigenstates, thereby
eliminating the degeneracy factor Ω(E, V,N).

Z =
∞∑

N=0

∑
{αj}

N∏
j=1

exp(−β(εαj
− μ))) (26.25)

26.6 A New Notation for Energy Levels

To simplify the expression for the grand canonical partition function, it is useful to
change the notation. So far, we have been describing an N -particle state by listing
the set of single-particle quantum numbers that specify that state. If more than one
particle were in a particular single-particle state, the corresponding quantum number
would occur more than once in the list.

An alternative representation would be to specify for each state the number of
times it appears in the list, which we will call the occupation number.

Perhaps an example would help illustrate the two representations. In the following
table I have indicated each state by a line and indicated the number of times it occurs
by an ‘×’.
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Table 26.1 Representations of energy levels.

quantum number Energy levels Occupation
α number, nα

6 – 0
5 × 1
4 × × × 3
3 – 0
2 × × 2
1 × 1

To represent the data in Table 26.1, we could have a list of quantum numbers,

{αj} = {α1, α2, α2, α4, α4, α4, α5} (26.26)

or, equivalently, a list of occupation numbers for the energy levels,

{nα} = {1, 2, 0, 3, 1, 0} (26.27)

Both representations contain exactly the same information. However, the representa-
tion in terms of occupation numbers turns out to be more useful for the evaluation of
the grand canonical partition function.

At this point we shall make another change in notation, and indicate the energy
levels by their energies instead of their quantum numbers. The notation ignores any
possible degeneracy of the energy levels, although such degeneracy is important and
must be included in all calculations.

Denoting the energy eigenstates by their energy alone is, of course, not quite
correct. Since energy levels can be (and often are) degenerate, this notation can
be misleading. I really cannot defend it on logical grounds, but it does make the
notation much more concise. It is also extremely common in the literature, so
that you will have to come to terms with it sometime. Tradition is tradition. The
important thing to keep in mind is that even though the sum is written as being
over the energy levels, ε, it is really over the energy eigenstates.

The occupation of the state ε is now denoted by nε. Note that for fermions, the
only allowed values of nε are 0 and 1. For bosons, nε can be any non-negative integer.

With this dubious change to denoting energy levels by their energy ε, the expression
for the grand canonical partition function becomes

Z =
∞∑

N=0

∑
nε=N∑

{nε}

∏
ε

exp[−β(ε − μ)nε] (26.28)
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where the sum over nε is understood to included only allowed values of nε.
Now note that the sum over {nε} is limited to those cases in which

∑
nε = N , but

the result is then summed over all values of N . We can simplify this double sum by
removing the sum over N and removing the limit on the sum over {nε}.

Z =
∑
{nε}

∏
ε

exp[−β(ε − μ)nε] (26.29)

The limitation to allowed values of nε is, of course, still in effect.
Eq. (26.29) can be greatly simplified by exchanging sums and products in much the

same way as we exchanged integrals and products for classical statistical mechanics
in Section 19.12. Exchanging the sum and product is the key step that leads to the
factorization of the grand canonical partition function. This trick is just as important
in quantum statistical mechanics as it is in classical statistical mechanics, and so
deserves its own section.

26.7 Exchanging Sums and Products

In eq. (26.25) we found a sum of products of the form
∑

{nε}
∏

ε exp[−β(ε − μ)nε],
which can be transformed into a product of sums. This is another application of what
we have called the best trick in statistical mechanics.∑

{nε}

∏
ε

exp[−β(ε − μ)nε], =
∑
nε1

∑
nε2

· · · e−β(ε1−μ)nε1 e−β(ε2−μ)nε2 · · ·

=
∑
nε1

e−β(ε1−μ)nε1

∑
nε2

e−β(ε2−μ)nε2 · · ·

=
∏

ε

∑
nε

exp[−β(ε − μ)nε] (26.30)

As in Section 19.12, where we discussed the classical version of this trick, care must
be taken with the indices of the sums on each side of the equality. The sum on the
left side of eq. (26.30) is over the entire set {nε} for the N -particle system, while the
sum in the last line on the right is only over the values taken on by the single-particle
quantum number nε.

26.8 Grand Canonical Partition Function for Independent Particles

Inserting the equality in eq. (26.30) into eq. (26.25), we find the following expression
for the grand canonical partition function.

Z =
∏

ε

∑
nε

exp[−β(ε − μ)nε] (26.31)

The evaluation of the grand canonical partition function has been reduced to the
product of sums over the number particles occupying each of the states. Each of these
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sums will turn out to be quite easy to evaluate for ideal gases, making the transition
to the grand canonical ensemble definitely worth the effort.

The logarithm of the grand canonical partition function gives us the Legendre
transform of the energy with respect to temperature and chemical potential, just as
it did in the case of classical statistical mechanics.

lnZ = −βU [T, μ] (26.32)

where

U [T, μ] = U − TS − μN (26.33)

Once the grand canonical potential has been calculated, all thermodynamic informa-
tion can be obtained by the methods discussed in Part 2.

In particular, if the system is extensive, which is the case in most problems of
interest, Euler’s equation tells us that

lnZ = −βU [T, μ] = βPV (26.34)

This provides a good method of calculating the pressure in a quantum gas.
Before we continue with the derivation of the basic equations for bosons and

fermions, we will make a slight detour in the next two sections to discuss the
properties of distinguishable quantum particles. We will return to identical particles
in Section 26.11.

26.9 Distinguishable Quantum Particles

The most common systems of distinguishable particles are colloids, in which the
particles are usually composed of many atoms. Because of the large mass of colloidal
particles, it is rarely necessary to treat them quantum mechanically. On the other
hand, it is instructive to see how the quantum grand canonical partition function for
distinguishable particles differs from that of fermions or bosons.

The distinguishing feature of a many-particle wave function for distinguishable
particles is that it is not generally symmetric or antisymmetric. This means that any
wave function of the form given in eq. (26.15) is valid. This equation is repeated here
for convenience, with the notation modified to denote the product over single-particle
states as a product over values of ε.

ψN =
N∏

j=1

ψεj
(�rj) (26.35)

Since the particles are distinguishable and can move between the system and the
reservoir, we must include a factor giving the number of ways we can have N particles
in the system and the remaining NR particles in the reservoir. Letting the total number
of particles be NT = N + NR, the factor is
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NT !
N !NR!

(26.36)

This is exactly the same factor that we introduced in Chapter 4 for a classical ideal
gas of distinguishable particles; the combinatorics are identical in the two cases.

We must also avoid double counting when two or more particles are in the same
single-particle state. This leads to a factor of

N !∏
ε nε!

(26.37)

If we include both of these factors, and note that the factor of NT ! and NR! are
not included in the entropy—or the grand canonical partition function—we find an
expression for Z of the following form.

Z =
∏

ε

∞∑
nε=0

1
nε!

exp[−β(ε − μ)nε] =
∏

ε

exp (exp[−β(ε − μ)]) (26.38)

If we take the logarithm of the partition function, this expression simplifies.

lnZ =
∑

ε

exp[−β(ε − μ)] = βPV (26.39)

The last equality is, of course, valid only in the case that the system is extensive.

26.10 Sneaky Derivation of PV =NkBT

The form of eq. (26.39) has a curious consequence. If we calculate the predicted value
of N from the grand canonical partition function (see eq. (26.42)), we find

〈N〉 = kBT
∂

∂μ
lnZ

= kBT
∂

∂μ

∑
ε

exp[−β(ε − μ)]

=
∑

ε

exp[−β(ε − μ)] = lnZ = βPV (26.40)

where the last equality comes from eq. (26.39), and is valid for extensive systems.
Eq. (26.40) is, of course, equivalent to

PV = NkBT (26.41)

if the fluctuations of N are neglected.
This derivation of the ideal gas law depends only on distinguishability, extensivity,

and the total wave function’s being a product of the single-particle eigenstates.
Extensivity is necessary to eliminate, for example, a system in a gravitational field.
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The most interesting feature about this derivation is that it is fully quantum
mechanical. The ideal gas law does not depend on taking the classical limit!

26.11 Equations for U = 〈E〉 and 〈N〉
In this section we return to calculations of the properties of bosons and fermions.
Eq. (26.31) for the grand canonical partition function is, in principle, sufficient to
perform such calculations. However, it turns out not to be the most efficient method
for obtaining most properties of fermions and bosons. In this section we will derive
the equations for the energy and number of particles, which will be the basis for the
methods discussed in the rest of the chapter.

Beginning with the formal expression for the grand canonical partition function in
eq. (26.31),

Z =
∏

ε

∑
nε

exp[−β(ε − μ)nε] (26.42)

we can easily find an expression for the average number of particles by taking a
logarithmic derivative with respect to μ.

∂

∂μ
lnZ =

∑
ε

∂

∂μ
ln
∑
nε

exp[−β(ε − μ)nε] (26.43)

=
∑

ε

[∑
nε

βnε exp[−β(ε − μ)nε]∑
nε

exp[−β(ε − μ)nε]

]

= β
∑

ε

〈nε〉

= β〈N〉

The quantity 〈nε〉 clearly represents the average number of particles in the state
labeled ε.

〈nε〉 =

∑
nε

nε exp[−β(ε − μ)nε]∑
nε

exp[−β(ε − μ)nε]
(26.44)

The equation for the average number of particles as a derivative of the grand
canonical partition function is, of course, related to the corresponding thermodynamic
identity in terms of the Legendre transform of the energy with respect to T and μ.

〈N〉 =
1
β

∂

∂μ
lnZ =

1
β

∂

∂μ
(−βU [T, μ]) =

∂(PV )
∂μ

(26.45)

The average number of particles is then

〈N〉 =
∑

ε

〈nε〉 (26.46)
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We will leave the proof of the corresponding equation for the energy to the reader.

U = 〈E〉 =
∑

ε

ε〈nε〉 (26.47)

Eqs. (26.46) and (26.47) turn out to be central to the calculation of the properties
of fermions and bosons. Since we are going to use them frequently in the next two
chapters, we will need to evaluate 〈nε〉 for both fermions and bosons, which will be
done in the next two sections.

26.12 〈nε〉 for bosons

For bosons, there are an infinite number of possibilities for the occupation of a single-
particle state. This makes the evaluation of eq. (26.44) only slightly more difficult than
the corresponding sum for fermions, since we can carry out the sum over all positive
integers.

∞∑
nε=0

exp[−β(ε − μ)nε] = (1 − exp[−β(ε − μ)])−1 (26.48)

The numerator of eq. (26.44) for bosons can be obtained by differentiating
eq. (26.48) with respect to β.

∞∑
nε=0

nε exp[−β(ε − μ)nε] = exp[−β(ε − μ)] (1 − exp[−β(ε − μ)])−2 (26.49)

The average occupation number is then given by the ratio of these quantities,
according to eq. (26.44).

〈nε〉 =
exp[−β(ε − μ)] (1 − exp[−β(ε − μ)])−2

(1 − exp[−β(ε − μ)])−1 (26.50)

= (exp[β(ε − μ)] − 1)−1

Note the strong similarity between the expression for the occupation number for
bosons and the average number of excited particles in a simple harmonic oscillator,
which we derived in eq. (23.72) in Section 23.10. They are all manifestations of the same
mathematical structure, which we first encountered in the solution to the quantum
simple harmonic oscillator.

26.13 〈nε〉 for fermions

Since there are only two possibilities for the occupation of a single-particle state
by fermions, the evaluation of eq. (26.44) is quite easy. The denominator and the
numerator are calculated first.
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1∑
nε=0

exp[−β(ε − μ)nε] = 1 + exp[−β(ε − μ)] (26.51)

1∑
nε=0

nε exp[−β(ε − μ)nε] = 0 + exp[−β(ε − μ)] (26.52)

The average occupation number is then given by the ratio of these quantities, according
to eq. (26.44).

〈nε〉 =
exp[−β(ε − μ)]

1 + exp[−β(ε − μ)]
= (exp[β(ε − μ)] + 1)−1 (26.53)

Note the strong similarity between the expression for the occupation number for
fermions and the average number of excited particles in a two-level system, which we
derived in eq. (23.56) in Section 23.9.

26.14 Summary of Equations for Fermions and Bosons

We can summarize the equations for 〈nε〉 by writing

〈nε〉 = (exp[β(ε − μ)] ± 1)−1 (26.54)

where the upper (plus) sign refers to fermions and the lower (minus) sign refers to
bosons.

Eqs. (26.46) and (26.47) can then be written compactly as

〈N〉 =
∑

ε

(exp[β(ε − μ)] ± 1)−1 (26.55)

U =
∑

ε

ε (exp[β(ε − μ)] ± 1)−1 (26.56)

For the rest of the discussion in this chapter, as well as the following chapters on
fermions and bosons, we will write N for 〈N〉. While this is not really correct,
and we should keep the distinction between N and 〈N〉 in mind, it is tiresome to
constantly write the brackets.

We can express the grand canonical partition function for fermions by inserting
eq. (26.51) in eq. (26.42).

Z =
∏

ε

(1 + exp[−β(ε − μ)]) (26.57)
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We can express the grand canonical partition function for bosons by inserting
eq. (26.48) in eq. (26.42).

Z =
∏

ε

(1 − exp[−β(ε − μ)])−1 (26.58)

Finally, we can express the logarithm of the grand canonical partition function in
a compact form for both cases.

lnZ = ±
∑

ε

ln (1 ± exp[−β(ε − μ)]) = βPV (26.59)

The upper signs refer to fermions, and the lower signs to bosons. The last equality is
valid only when the system is extensive, but that will be true of most of the cases we
will consider.

Warning: Do not forget that sums over ε must count every eigenstate, not just every
energy level.

If we use the density of states that we calculated in Section 26.2, we can write the
logarithm of the grand canonical partition function in terms of an integral.

lnZ = ±
∫ ∞

0

D(ε) ln (1 ± exp[−β(ε − μ)]) dε = βPV (26.60)

26.15 Integral Form of Equations for N and U

In Section 26.2 we calculated the density of single-particle states, D(ε), for non-
interacting particles in a box, with the result given in eq. (26.13).

N =
∫ ∞

0

D(ε) (exp[β(ε − μ)] ± 1)−1
dε (26.61)

U =
∫ ∞

0

D(ε) (exp[β(ε − μ)] ± 1)−1
ε dε (26.62)

For more general systems, which we will discuss later in this chapter, the density
of states, D(ε), will have a different structure, which might be considerably more
complex. However, we will still be able to express eqs. (26.55) and (26.56) in integral
form.

The integral form of the equations can still be used if the energy spectrum is
partially discrete, if we represent the discrete part of the spectrum with a delta function
of the form Xδ(ε − ε1), where the constant X represents the degeneracy of the energy
level at ε1.

One of the most interesting aspects of eqs. (26.61) and (26.62) is that
they completely separate the quantum statistics (which enter as the factor
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(exp[β(ε − μ)] ± 1)−1) and the effects of the Hamiltonian (which are reflected in
the density of states, D(ε)). We will spend considerable effort in understanding the
properties of systems of non-interacting particles, which might seem to be very special
cases. Nevertheless, the methods we develop will apply directly to much more general
cases, as long as we are able to calculate the density of states, D(ε). We will even be
able to obtain very general results in the following chapters for the consequences of
the various kinds of structure in D(ε) that can arise.

26.16 Basic Strategy for Fermions and Bosons

The basic strategy for dealing with problems of fermions and bosons differs from
that usually employed for other problems in quantum statistical mechanics, where
the first task is almost always to evaluate the canonical partition function. Although
it is possible to solve problems with fermions and bosons by evaluating the grand
canonical partition function, it is almost always better to use eqs. (26.46) and (26.47)
(or eqs. (26.61) and (26.62) ) for the average number of particles and the average
energy.

The first step in solving problems involving fermions and bosons is to use eq. (26.55)
or eq. (26.61) to obtain N as a function of T and μ that is N = N(T, μ).

Next, note that we rarely know the value of the chemical potential, while we almost
always do know the number of particles in the system. Furthermore, the number of
particles is generally fixed during experiments, while the chemical potential is not.
This leads to inverting the function N = N(T, μ) that we found from eq. (26.55) or
eq. (26.61) to give us μ = μ(T,N).

Finally, we use eq. (26.56) or eq. (26.62) to find the energy as a function of T
and N (the latter through the function μ = μ(T,N)) This gives us two equations of
state that will probably answer any questions in which we are interested. If we need
a complete fundamental relation, we can—at least in principle—find it by integrating
the equations of state, as discussed in Chapter 13. A fundamental relation can be
found from eq. (26.59), which also provides a quick way of calculating the pressure for
extensive systems.

The details of how these calculations can be carried out in practice will be discussed
in Chapters 27 and 28.

26.17 P = 2U/3V

The equation in the title of this section is easy to derive for a three-dimensional,
monatomic, classical, ideal gas or a quantum gas of distinguishable particles. We need
only combine the ideal gas law,

PV = NkBT (26.63)
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with the equation for the energy,

U =
3
2
NkBT (26.64)

to get

P =
2
3

U

V
(26.65)

The surprising thing about eq. (26.65) is that it is also true for ideal Fermi and
Bose gases, even though eqs. (26.63) and eqs. (26.64) are not.

The proof begins with the integral form of the equations for the grand canonical
partition function from eq. (26.60),

lnZ = ±
∫ ∞

0

D(ε) ln (1 ± exp[−β(ε − μ)]) dε = βPV (26.66)

and the average energy from eq. (26.62)

U =
∫ ∞

0

D(ε) (exp[β(ε − μ)] ± 1)−1
ε dε (26.67)

In both of these equations, the density of states is given by eq. (26.13),

D(ε) =
V

4π2

(
2m

�2

)3/2

ε1/2 = Xε1/2 (26.68)

where we have introduced a constant X to simplify the algebra.
To derive eq. (26.65) we integrate the expression for lnZ by parts, so that

lnZ = ±X

∫ ∞

0

ε1/2 ln (1 ± exp[−β(ε − μ)]) dε (26.69)

becomes

(26.70)

lnZ = ±X

[
2
3
ε3/2 ln (1 ± exp[−β(ε − μ)])

]∞
0

∓X

∫ ∞

0

2
3
ε3/2 (1 ± exp[−β(ε − μ)])−1 (∓β exp[−β(ε − μ)]) dε

The first term on the right in eq. (26.70) vanishes exactly. Comparing eq. (26.70) with
eq. (26.67) leaves us with

lnZ =
2Xβ

3

∫ ∞

0

ε3/2 (exp[β(ε − μ)] ± 1)−1
dε =

2β

3
U (26.71)

Since lnZ = βPV for an extensive system, this gives us eq. (26.65).
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It is rather remarkable that eq. (26.65) holds for any form of statistics in either
classical or quantum mechanics. The factor 2/3 does depend on the system being
three-dimensional, but that proof will be left to the reader.

26.18 Problems

Problem 26.1

Identities in the grand canonical ensemble

We have seen that derivatives of partition functions can be used to express various
quantities of interest. Derive identities for the following in terms of derivatives of the
quantum-mechanical, grand canonical partition function.

1. The average number of particles in the system, 〈N〉, in terms of a derivative with
respect to μ.

2. The average number of particles in the system, 〈N〉, in terms of a derivative with
respect to the fugacity.

3. The average energy as a function of β and μ in terms of derivatives.

Problem 26.2

More on the grand canonical ensemble

We have previously derived a general expression for the grand canonical partition
function for a system of independent identical particles

Z =
∏

ε

∑
nε

exp [−β(ε − μ)nε]

where the product over ε is actually the product over the single-particle eigenstates.
Each eigenstate must be counted separately, even when several eigenstates have the
same energy (also denoted by ε).

The sum over nε is only over allowed values of nε.
For bosons, an arbitrary number of particles can be in the same state, so nε can

take on any non-negative integer value, nε = {0, 1, 2, . . .}.
For fermions, no more than one particle can be in a given state, so nε can only take

on the values 0 and 1, nε = {0, 1}.
Do each of the following for both fermions and bosons

1. Carry out the sum in the grand canonical partition function explicitly.
2. Using the result from the previous question, calculate the average number of

particles 〈N〉 in terms of β and μ.
3. Calculate the average number of particles in an eigenstate with energy ε, denoted

by 〈nε〉.
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4. Express the average number of particles 〈N〉 in terms of a sum over 〈nε〉.
5. Calculate the average energy in terms of a sum over 〈nε〉.

Problem 26.3

Fermion and boson fluctuations

Prove that the fluctuations about the average number of particles in an eigenstate,
〈n〉, is given by

δ2〈n〉 = 〈n〉 (1 ± 〈n〉)
where one of the signs is for fermions and the other is for bosons.
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Bose–Einstein Statistics

The world is full of magical things patiently waiting for our wits to grow
sharper.

Bertrand Russell (1872–1970), philosopher and mathematician

Perhaps the most startling property of systems governed by Bose–Einstein statistics
is that they can exhibit a phase transition in the absence of interactions between the
particles. In this chapter we will explore the behavior of an ideal gas of bosons and
show how this unusual phase transition arises.

27.1 Basic Equations for Bosons

We begin with the Bose–Einstein equations for N and U , taken from eqs. (26.55) and
(26.56).

N =
∑

ε

〈nε〉 =
∑

ε

(exp[β(ε − μ)] − 1)−1 (27.1)

U =
∑

ε

ε〈nε〉 =
∑

ε

ε (exp[β(ε − μ)] − 1)−1 (27.2)

We are interested in understanding experiments in which the chemical potential μ
is unknown and the number of particles N is fixed. On the other hand, as discussed in
Chapter 26, eqs. (27.1) and (27.2) were derived under the assumption that μ is known.
This leads us to begin calculations by finding N = N(T, μ) from eq. (27.1), and then
inverting the equation to obtain the chemical potential, μ = μ(T,N). After we have
found μ, we can use eq. (27.2) to calculate the energy and the specific heat for a fixed
number of particles.

27.2 〈nε〉 for Bosons

The occupation number for bosons was derived in Chapter 26 and given in eq. (26.50).

fBE(ε) = 〈nε〉 = (exp[β(ε − μ)] − 1)−1 (27.3)

Although the expressions for the occupation numbers for bosons and fermions only
differ by a plus or minus sign in the denominator, the consequences of this small
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difference are enormous. The first consequence of the minus sign in the denominator
of eq. (27.3) for bosons is a limitation on the allowed values of the chemical potential.
Since fBE(ε) gives the average number of particles in a single-particle state with energy
ε, it cannot be negative.

(exp[β(ε − μ)] − 1)−1
> 0 (27.4)

This immediately requires that

ε > μ (27.5)

for all values of ε. In particular, if ε = 0 is the lowest energy of a single-particle state,
then

μ < 0 (27.6)

The chemical potential of a gas of bosons must be negative.

Eq. (27.6) is almost a general result. It assumes that the lowest energy level is zero,
which might not always be true. Because this can be a trap for the unwary, it is
very important to know why μ is algebraically less than the energy of the lowest
single-particle state, instead of just remembering that it is less than zero.

27.3 The Ideal Bose Gas

For systems with a continuous energy spectrum, we expect to be able to change
the sums in eqs. (27.1) and (27.2) into integrals and use eqs. (26.61) and (26.62) to
calculate the properties of the system. For bosons, these equations take the following
form.

N =
∫ ∞

0

DBE(ε) (exp[β(ε − μ)] − 1)−1
dε (27.7)

U =
∫ ∞

0

DBE(ε) ε (exp[β(ε − μ)] − 1)−1
dε (27.8)

A particularly important case, which we will discuss in detail, is an ideal gas of
bosons. We have already derived the single-particle density of states for particles in a
box in eq. (26.13).

DBE(ε) =
V

4π2

(
2m

�2

)3/2

ε1/2 (27.9)

Eq. (27.9) completes the equations we need to investigate the properties of free
bosons. We will begin to calculate those properties by looking at the low-temperature
behavior of the chemical potential in the next section.



328 Bose–Einstein Statistics

27.4 Low-Temperature Behavior of μ

We can simplify the problem of finding the chemical potential from eq. (27.7) by
making the integral dimensionless. To do this, we introduce a dimensionless variable
x = βε.

N =
∫ ∞

0

V

4π2

(
2m

�2

)3/2

ε1/2 (exp[β(ε − μ)] − 1)−1
dε (27.10)

=
V

4π2

(
2m

�2

)3/2

(kBT )3/2

∫ ∞

0

x1/2 (exp(−βμ) exp(x) − 1)−1
dx

It is convenient at this point to introduce the fugacity

λ = exp(βμ) (27.11)

Note that because μ < 0, the fugacity must be less than 1, and its reciprocal, which
enters into eq. (27.10), must be greater than 1.

λ−1 > 1 (27.12)

In terms of the fugacity, the equation for N becomes

N =
V

4π2

(
2m

�2

)3/2

(kBT )3/2

∫ ∞

0

x1/2
(
λ−1 exp(x) − 1

)−1
dx. (27.13)

The form of eq. (27.13) is extremely important in understanding the properties of
bosons. As the temperature is decreased, the factor of T 3/2 in front of the integral
also decreases. Since the total number of particles is fixed, the dimensionless integral
in eq. (27.13) must increase. The only parameter in the integral is the inverse fugacity,
so it must vary in such a way as to increase the value of the integral. Since the inverse
fugacity is in the denominator of the integrand, the only way to increase the value
of the integral is to decrease the value of the inverse fugacity. However, because of
eq. (27.12) we cannot decrease the value of the inverse fugacity below λ−1 = 1. If the
value of the dimensionless integral in eq. (27.13) diverged as λ−1 → 1, there would be
no problem. However, although the integrand diverges at x = 0 when λ = 1, the value
of the integral is finite.∫ ∞

0

x1/2 (exp(x) − 1)−1
dx =

√
π

2
ζ

(
3
2

)
= 1.306

√
π = 2.315 (27.14)

It is traditional to express the value of the integral in eq. (27.14) in terms of a
ζ-function instead of simply 2.315. This is largely because the theory of bosons
was developed before computers were available. At that time, instead of simply
evaluating integrals numerically, great efforts were made to express them in terms
of ‘known’ functions; that is, functions whose values had already been tabulated.
Although retaining the ζ-function is a bit of an anachronism, I have included it and
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the factor of
√

π in eq. (27.14) in the following equations for the sake of tradition
(and comparison with other textbooks).

The consequence of the dimensionless integral in eq. (27.14) having an upper bound
is that the equation cannot be correct below a temperature TE that is determined by
setting the integral equal to its maximum value.

N =
V

4π2

(
2m

�2

)3/2

(kBTE)3/21.306
√

π (27.15)

This equation can also be written as

N = 2.315
V

4π2

(
2m

�2

)3/2

(kBTE)3/2 (27.16)

The temperature TE is known as the Einstein temperature.

kBTE =
(

2π�
2

m

)(
N

2.612V

)2/3

(27.17)

For fixed N and temperatures less than TE , eq. (27.13) has no solution, even
though you can certainly continue to cool a gas of bosons below TE . This apparent
contradiction has an unusual origin. Even though the energy levels are very closely
spaced, so that changing from a sum in eq. (27.1) to the integral in eq. (27.7) would
not normally be expected to cause difficulties, eq. (27.7) is not valid for T < TE .

In the next section we will show how to remove the contradiction by modifying
eq. (27.7) to treat the lowest energy state explicitly.

27.5 Bose–Einstein Condensation

We can trace the strange behavior of bosons at low temperatures to the form of the
boson occupation number in eq. (27.3).

fBE(ε) = 〈nε〉 = (exp[β(ε − μ)] − 1)−1 (27.18)

The difficulty arises from the fact that the occupation of the lowest energy level, ε = 0,
has an occupation number

fBE(0) = 〈n0〉 = N0 = (exp[−βμ] − 1)−1 (27.19)

If we were to set μ = 0, the occupation number would be infinite. This means that for
very small but non-zero values of μ, the occupation number of the ε = 0 state can be
arbitrarily large. In fact, it can even contain all the bosons in the system!

As will be justified in Section 27.8, the only modification we need to make
in eq. (27.7) is to include the number of particles in the ε = 0 state, which we
denote as N0.
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N = N0 +
∫ ∞

0

DBE(ε) (exp[β(ε − μ)] − 1)−1
dε (27.20)

For free bosons this becomes

N = N0 +
V

4π2

(
2m

�2

)3/2

(kBT )3/2

∫ ∞

0

x1/2
(
λ−1 exp(x) − 1

)−1
dx (27.21)

Above the temperature TE , the occupation N0 of the ε = 0 state is much smaller
than the total number N of particles in the system, and may be neglected. Below TE ,
the value of N0 is comparable to N . That is, a significant fraction of the particles in
the system are in the single-particle state with the lowest energy. The transition at TE

is called the Bose–Einstein condensation, because a significant fraction of the particles
‘condense’ into the ε = 0 state at temperatures below TE .

27.6 Below the Einstein Temperature

If we compare eq. (27.21) with eq. (27.13), which determines the Einstein temperature,
we see that we can rewrite eq. (27.21) as

N = N0 + N

(
T

TE

)3/2

(27.22)

We can then solve this equation for the occupation of the ε = 0 state below TE .

N0 = N

[
1 −
(

T

TE

)3/2
]

(27.23)

Eq. (27.23) shows that N0 → N as T → 0; for zero temperature all particles are in the
lowest single-particle energy state.

Eq. (27.23) also shows that as T → TE , N0 → 0. This result is, of course, only an
approximation. What it means is that above TE , N0 � N , so that it can be safely
ignored.

Note that as T → TE from below, N0 goes linearly to zero.

N0

N
=

3
2

(
TE − T

TE

)
+ · · · (27.24)

If we combine eq. (27.23) with eq. (27.19), we can find the temperature dependence
of the chemical potential.

N0 = [exp(−βμ) − 1]−1 = N

[
1 −
(

T

TE

)3/2
]

(27.25)
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Since we know that βμ is very small below TE , we can expand exp(−βμ) in eq. (27.25)
to find a very good approximation for μ.

μ ≈ −kBT

N

[
1 −
(

T

TE

)3/2
]−1

(27.26)

Because of the factor of 1/N in eq. (27.26), the chemical potential μ is extremely
small below the Einstein temperature TE ; if N is of the order of Avogadro’s number,
|μ| is smaller than 10−23kBT .

The approximation in eq. (27.26) also shows that as T → TE , the value of μ rises
sharply. If T is close enough to the Einstein temperature, the approximation breaks
down. However, this only happens when T is extremely close to TE . For all practical
purposes, eq. (27.26) can be used for all temperatures below TE .

Now that we have found the chemical potential for an ideal gas of bosons, we are
in a position to calculate the energy and the specific heat, which we will do in the
next section.

27.7 Energy of an Ideal Gas of Bosons

Given the chemical potential, we can calculate the energy of a gas of bosons from
eq. (27.8).

U = U0 +
∫ ∞

0

DBE(ε)ε (exp[β(ε − μ)] − 1)−1
ε dε (27.27)

In this equation,

U0 = 0 (27.28)

is the energy of a particle in the lowest energy level is ε = 0.
Introducing the dimensionless variable x = βε, as we did in eq. (27.13), we can

write an equation for U in terms of a dimensionless integral.

U =
V

4π2

(
2m

�2

)3/2

(kBT )5/2

∫ ∞

0

x3/2
(
λ−1 exp(x) − 1

)−1
dx (27.29)

Below TE , eq. (27.29) simplifies because λ−1 = 1. The dimensionless integral can
be evaluated numerically.∫ ∞

0

x3/2 (exp(x) − 1)−1
dx = ζ

(
5
2

)
Γ
(

5
2

)
= 1.341

(
3
4

)
π1/2 = 1.7826 (27.30)

In this equation, Γ(·) indicates the gamma function and ζ(·) again indicates the zeta
function.

Using eq. (27.30), eq. (27.29) becomes

U = 1.7826
V

4π2

(
2m

�2

)3/2

(kBT )5/2 (27.31)
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Since we know from eq. (27.15) that

N = 2.315
V

4π2

(
2m

�2

)3/2

(kBTE)3/2 (27.32)

we find that the energy per particle has a simple form.

U

N
=
(

1.7826
2.315

)(
T

TE

)3/2

kBT = .7700
(

T

TE

)3/2

kBT (27.33)

The specific heat at constant volume is found by differentiating with respect to
temperature.

cV = 1.925 kB

(
T

TE

)3/2

(27.34)

Notice that for T = TE , the specific heat takes on the value of 1.925 kB, which
is greater than the classical value of 1.5 kB that it takes on in the limit of high
temperatures.

For temperatures above TE , the specific heat of an ideal boson gas decreases
monotonically to its asymptotic value of 1.5 kB . The derivation involves expanding
the integral in eq. (27.8) as a function of βμ. Since the expansion involves interesting
mathematics, but little physics, I will refer the readers to the many textbooks that
give the details. The fastest and easiest way to obtain the function today is to carry
out the integral in eq. (27.8) numerically.

27.8 What About the Second-Lowest Energy State?

Since we have seen that the occupation of the lowest energy level has such a dramatic
effect on the properties of a gas of bosons, it might be expected that the second-lowest
energy state would also play a significant role. Oddly enough, it does not, even though
the second-lowest energy state lies only slightly higher than the lowest energy state.

The energy levels are given by eq. (26.7). Since the wave function in eq. (26.3)
vanishes if nx, ny, or nz is zero, the lowest energy level, εo, corresponds to �n = (1, 1, 1).
This gives us

ε0 = ε(1,1,1) =
�

2π2

2mL2

(
12 + 12 + 12

)
= 3

�
2π2

2mL2
(27.35)

[Remember the warning about the lowest energy level deviating from ε = 0.]
The next lowest energy level, ε1, corresponds to �n = (1, 1, 2), or (1, 2, 1), or (2, 1, 1)

These three states each have the energy
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ε1 = ε(1,1,2) =
�

2π2

2mL2

(
12 + 12 + 22

)
= 6

�
2π2

2mL2
(27.36)

The difference in energy between the two states is

Δε = ε1 − ε0 = 3
�

2π2

2mL2
(27.37)

The energy difference found in eq. (27.37) is extremely small. Suppose we consider
a system consisting of 4He in a cubic container with L = 1 cm. The energy difference
is only about 2.5 × 10−26 erg. Expressing this as a temperature, we have

Δε

kB
≈ 1.8 × 10−14 K (27.38)

Despite the fact that this energy difference is so small, it has a large effect on the
occupation number of the state because it is substantially larger than the chemical
potential. From eq. (27.26) we see that βμ ≈ −1/N ≈ −10−23, so that the occupation
number, 〈n1〉, of the second-lowest energy levels is

〈n1〉 = (exp(β(Δε − μ)) − 1)−1 (27.39)

≈ (exp(βΔε) − 1)−1

≈ 1
βΔε

≈ T

1.8 × 10−14 K
,

≈ (5.5 × 1013 K−1)T

where the last two lines comes from eq. (27.38). The occupation of the second lowest
states is of the order of 1012 of more, but this is still very small in comparison to the
total number of particles, N ≈ 1023, or the number of particles in the lowest energy
state below TE . Because the numbers of particles in each of the states above the
lowest-energy state are so much smaller than the number in the lowest-energy state,
it is completely sufficient to use the integral in eq. (27.20) to calculate their total
contribution.

27.9 The Pressure below T < TE

Eq. (26.65) has an interesting consequence for the pressure of a boson gas
below the Bose–Einstein condensation. If we insert eq. (26.65) into eq. (27.31),
we obtain

P =
2
3

U

V
= 0.2971

1
π2

(
2m

�2

)3/2

(kBT )5/2 (27.40)
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This means that the pressure along any isotherm for a gas of bosons below TE is
constant. It depends on the mass of the particles and the temperature, but nothing
else. Another way of expressing this is to say that the isothermal compressibility of
an ideal Bose gas is infinite below the Bose–Einstein transition.

27.10 Transition Line in P -V Plot

We can combine eq. (27.17) with eq. (27.40) to find the Bose–Einstein transition line
in a P -V plot.

P = 0.9606 �
2mπ1/2

(
N

V

)5/3

(27.41)

As eq. (27.41) shows, the pressure is proportional to the (5/3)-power of the number
density along the transition line.

27.11 Problems

Problem 27.1

Bosons in two dimensions

Consider an ideal boson gas in two dimensions. The N particles in the gas each have
mass m and are confined to a box of dimensions L × L.

1. Calculate the density of states for the two-dimensional, ideal Bose gas.
2. Calculate the Einstein temperature in two dimensions in terms of the given para-

meters and a dimensionless integral. You do have to evaluate the dimensionless
integral.

Problem 27.2

Bosons in four dimensions

Consider an ideal boson gas in four dimensions. The N particles in the gas each have
mass m and are confined to a box of dimensions L × L × L × L.

1. Calculate the density of states for the four-dimensional, ideal Bose gas.
2. Calculate the Einstein temperature in four dimensions in terms of the given

parameters and a dimensionless integral. You do not have to evaluate the dimen-
sionless integral.

3. Below the Einstein temperature, calculate the occupation number of the lowest-
energy, single-particle state as a function of temperture, in terms of the Einstein
temperature and the total number of particles.

4. Calculate the chemical potential below the Einstein temperature.
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Problem 27.3

Energy of an ideal Bose gas in four dimensions

Again consider an ideal boson gas in four dimensions. The N particles in the gas
each have mass m and are confined to a box of dimensions L × L × L × L. Calculate
the energy and the specific heat as functions of temperature below the Einstein
temperature.
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Fermi–Dirac Statistics

There are two possible outcomes: If the result confirms the hypothesis, then
you’ve made a measurement. If the result is contrary to the hypothesis, then
you’ve made a discovery.

Enrico Fermi

In the previous chapter we investigated the properties of bosons, based on the general
equations for quantum gases derived in Chapter 26. The same equations—with a
positive sign in the denominator—govern fermions. Nevertheless, the properties of
fermions are dramatically different from those of bosons. In particular, fermions
do not exhibit any phase transition that might correspond to the Bose–Einstein
condensation.

The most important fermions are electrons, and understanding the properties of
electrons is central to understanding the properties of all materials. In this chapter we
will study the ideal Fermi gas, which turns out to explain most of the properties of
electrons in metals. In Chapter 29, we will see how Fermi–Dirac statistics also explains
the basic features of insulators and semiconductors.

We will begin in the next section with the fundamental equations for fermions.

28.1 Basic Equations for Fermions

We begin with the Fermi-Dirac equations for N and U , taken from eqs. (26.55) and
(26.56).

N =
∑

ε

〈nε〉 =
∑

ε

(exp[β(ε − μ)] + 1)−1 (28.1)

U =
∑

ε

ε〈nε〉 =
∑

ε

ε (exp[β(ε − μ)] + 1)−1 (28.2)

We follow the same basic procedure as we did for bosons in the previous chap-
ter by finding N = N(T, μ) from eq. (28.1), and then inverting the equation to
obtain the chemical potential, μ = μ(T,N). However, both the mathematical methods
and the physical results for fermions are quite different than what they are for
bosons.
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28.2 The Fermi Function and the Fermi Energy

The average occupation number, 〈nε〉, for fermions in an eigenstate with energy ε was
calculated in eq. (26.53). It is called the Fermi function, and it is written as

fFD(ε) = 〈nε〉 = (exp[β(ε − μ)] + 1)−1 (28.3)

To solve for the properties of a Fermi gas, it is extremely helpful to have a clear idea
of the form of the Fermi function, which is shown for a moderately low temperature
in Fig. 28.1.

For lower temperatures (higher β = 1/kBT ), the Fermi function becomes steeper
at ε = μ. The derivative of the Fermi function is given by

∂fFD(ε)
∂ε

= f ′
FD(ε) = −β exp[β(ε − μ)] (exp[β(ε − μ)] + 1)−2 (28.4)

Evaluating the derivative at ε = μ gives the maximum value of the slope.

f ′
FD(μ) = −β

4
= − 1

4kBT
(28.5)

It is clear from the form of the function that the width of the non-constant part of
the function near ε = μ is of the order of 2kBT . As the temperature is lowered, the
Fermi function approaches a step function. At T = 0, the Fermi function is equal to 1
for ε < μ, 0 for ε > μ, and 1/2 for ε = μ.

For most problems of interest, kBT � μ, so that treating the Fermi function as a
step function is a very good first approximation. Indeed, the Fermi function for most
materials of common interest at room temperature is much closer to a step function
than the curve shown in Fig. 28.1.

As mentioned above, the total number of particles, N , is inevitably fixed in any
system we will discuss, so that the chemical potential is a function of N and the

21.510.5

0.2

0.4

0.6

0.8

fFD(ε)

1

ε

Fig. 28.1 The form of the Fermi function. The units of energy have been chosen such that μ = 1,
and β = 10 in this figure.
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temperature T . However, as we will see later, the chemical potential is a rather weak
function of temperature, so that its zero-temperature limit usually provides a very
good approximation to its value at non-zero temperatures. This limit is so important
that it has a name, the Fermi energy, and is denoted by εF .

εF = lim
T→0

μ(T,N) (28.6)

Because the Fermi function becomes a step function at T = 0, the Fermi energy
must always lie between the energy of the highest occupied state and that of the
lowest unoccupied state. In fact, as the problems in this section will show, it always
lies exactly half way between the energies of the highest occupied state and the lowest
unoccupied state. This gives a simple rule for finding the Fermi energy that greatly
simplifies fermion calculations.

The definition in eq. (28.6) agrees with that of Landau and Lifshitz in their classic
book on statistical mechanics. Unfortunately, many textbooks give a different defini-
tion (the location of the highest occupied state at T = 0), which only agrees with the
Landau–Lifshitz definition when energy levels are quasi-continuous. The alternative
definition loses the connection between the Fermi energy and the chemical potential
for systems with a discrete energy spectrum, or for insulators and semiconductors.
This is a serious handicap in solving problems. Using the definition of εF given in
eq. (28.6) makes it much easier to understand the behavior of such systems. The
rule of thumb that the Fermi energy lies exactly half way between energies of the
highest occupied state and the lowest unoccupied state is easy to remember and
use in calculations. Finding εF should always be the first step in solving a fermion
problem.

28.3 A Useful Identity

The following identity is very useful in calculations with fermions.

(exp[β(ε − μ)] + 1)−1 = 1 − (exp[−β(ε − μ)] + 1)−1 (28.7)

The left side of eq. (28.7) is, of course, the Fermi function, fFD. On the right side, the
second term gives the deviation of the Fermi function from 1.

It is easy to prove the identity in eq. (28.7), and I strongly recommend that you
do so yourself. It might be easier to prove it again during an examination than to
remember it.

For energies more than a couple of factors of kBT above the chemical potential μ,
the Fermi function is very small, and can be approximated well by neglecting the ‘+1’
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in the denominator.

fFD = (exp[β(ε − μ)] + 1)−1 ≈ exp[−β(ε − μ)] (28.8)

For energies more than a couple of factors of kBT below the chemical potential μ,
the Fermi function is close to 1, and the second term on the right side of eq. (28.7)
can be approximated well by neglecting the ‘+1’ in its denominator.

fFD = 1 − (exp[−β(ε − μ)] + 1)−1 ≈ 1 − exp[β(ε − μ)] (28.9)

These simple approximations are the key to solving fermion problems with a
discrete spectrum or a gap in a continuous spectrum.

Up to this point we have been discussing the effects of Fermi statistics on the
occupation number as a function of the energy of a given state. Now we will investigate
how Fermi statistics affect the properties of systems with different distributions of
energy levels.

28.4 Systems with a Discrete Energy Spectrum

We will first consider systems with a discrete spectrum, like that of the hydrogen
atom. Much of the early work on the properties of fermions dealt with electronic
behavior in atoms, and built on the exact quantum solution for the hydrogen
atom to construct approximations in which electrons were taken to be subject
to the field of the nucleus, but otherwise non-interacting. Since the electrons
were orbiting the nucleus, the single-particle eigenstates were called orbitals—a
name that has stuck, even for systems in which the electrons are not orbiting
anything.

Assume we have non-interacting fermions, each of which has the same energy
spectrum composed of discrete single-particle eigenstates. Let the states be labeled by
an index j, the energies of the states be denoted by εj , and the degeneracy of the j-th
state by gj .

Recall from Section 26.16 that the key to solving problems for fermions and bosons
is to use the equations for N and U . Those equations were given in eqs. (26.46) and
(26.47). Inserting the Fermi function in these equations, we find

N =
∑

j

gj (exp[β(εj − μ)] + 1)−1 (28.10)

and

U =
∑

j

gjεj (exp[β(εj − μ)] + 1)−1 (28.11)

It is so much more valuable to work out the consequences of eqs. (28.10) and (28.11)
yourself than to see somebody else’s solutions, that I am not going to present
examples at all—just homework problems at the end of the chapter.
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28.5 Systems with Continuous Energy Spectra

For systems with a continuous energy spectrum, we can use the integral forms in
eqs. (26.61) and (26.62) to calculate the properties of the system. For fermions, these
equations take the following form.

N =
∫ ∞

0

DFD(ε) (exp[β(ε − μ)] + 1)−1
dε (28.12)

U =
∫ ∞

0

DFD(ε)ε (exp[β(ε − μ)] + 1)−1
dε (28.13)

The Fermi energy is given by the zero-temperature limit of the chemical potential,
as shown in eq. (28.6). In that limit, the Fermi function becomes a step function, and
N is determined by the equation

N =
∫ εF

0

DFD(ε)dε (28.14)

If we know the density of states, D(ε), we can solve eq. (28.14) for the Fermi energy
εF . In the following sections we will carry this out explicitly for an ideal Fermi gas.

28.6 Ideal Fermi Gas

The case of an ideal gas of fermions in three dimensions is extremely important. This
might seem surprising, since electrons certainly interact through the Coulomb force,
and that interaction might be expected to dominate the behavior in a macroscopic
object. Fortunately, for reasons that go well beyond the scope of this book, electrons in
a solid behave as if they were very nearly independent. You will understand why this
is true when you take a course in many-body quantum mechanics. In the meantime,
just regard it as a stroke of good luck that simplifies your life.

We have already derived the single-particle density of states for particles in a box
in eq. (26.13). To apply it to electrons we need only multiply it by 2 to take into
account the spin of the electron, which takes on two eigenvalues.

DFD(ε) =
V

2π2

(
2m

�2

)3/2

ε1/2 (28.15)

28.7 Fermi Energy

Since the Fermi energy will prove to be a good first approximation to the chemical
potential, we will begin by calculating it from the density of states.

In the limit of zero temperature, the Fermi function becomes a step function, and
we use eq. (28.14) for the number of particles to find an equation for εF .

N =
∫ εF

0

DFD(ε)dε =
∫ εF

0

V

2π2

(
2m

�2

)3/2

ε1/2dε =
V

2π2

(
2m

�2

)3/2 2
3
ε
3/2
F (28.16)
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This equation can then be inverted to find εF as a function of N .

εF =
�

2

2m

(
3π2N

V

)2/3

(28.17)

Note that the Fermi energy depends on the two-thirds power of the number density
N/V , and inversely on the particle mass.

Because of the frequency with which the product βεF appears in calculations,
Fermi energy is often expressed in terms of the Fermi temperature, TF .

εF = kBTF (28.18)

β εF =
TF

T
(28.19)

Fermi temperatures turn out to be remarkably high. TF for most metals ranges
from about 2 × 104K to 15 × 104K. For comparison, the temperature of the surface
of the sun is only about 6 × 103K. For experiments at room temperature (300K),
this means that T/TF ≈ 0.01, justifying the statement made in Section 28.2 that the
Fermi function is very close to a step function for real systems of interest. Again for
comparison, Fig. 28.1 was drawn for the case of T/TF ≈ 0.1.

Once we have the Fermi energy, the total energy of the system at T = 0 can be
obtained from eq. (28.13), using the step function that is the zero-temperature limit
of the Fermi function.

U =
∫ εF

0

DFD(ε)ε dε =
V

2π2

(
2m

�2

)3/2 ∫ εF

0

ε3/2dε =
V

2π2

(
2m

�2

)3/2 2
5
ε
5/2
F (28.20)

Combining eq. (28.16) with eq. (28.20), we find that the energy per particle takes
on a particularly simple form.

U

N
=

3
5
εF (28.21)

28.8 Compressibility of Metals

Metals are hard to compress. They also contain electrons that are fairly well described
by the ideal gas of fermion we have been discussing. Perhaps surprisingly, these two
facts are closely related.

If we take the energy of an ideal gas of fermions in terms of the Fermi energy from
eq. (28.21) and insert the expression for the Fermi energy from eq. (28.17), we find an
expression for the energy as a function of the volume V .

U

N
=

3
5

�
2

2m

(
3π2N

V

)2/3

(28.22)
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Recalling the definition of the pressure as a derivative of the energy,

P = −∂U

∂V
(28.23)

we find

P = −N
3
5

�
2

2m

(
3π2N

)2/3 ∂

∂V
V −2/3 = N

3
5

�
2

2m

(
π2N
)2/3
(−2

3

)
V −5/3 (28.24)

or

P =
2
5

�
2

2m

(
π2
)2/3
(

N

V

)5/3

(28.25)

Recalling the definition of the compressibility from eq. (14.14),

κT = − 1
V

(
∂V

∂P

)
T,N

= −1

/[
V

(
∂P

∂V

)
T,N

]
(28.26)

we find that

κT =
3m

�2
π−4/3

(
V

N

)5/3

(28.27)

This can also be written in terms of the bulk modulus.

B =
1

κT
= −V

(
∂P

∂V

)
T,N

=
�

2

3m
π4/3

(
N

V

)5/3

(28.28)

Comparing eq. (28.28) with the expression for the Fermi energy in eq. (28.17)

εF =
�

2

2m

(
3π2N

V

)2/3

(28.29)

we find a surprisingly simple result.

B =
1

κT
=

5
3
P =

2
3

N

V
εF (28.30)

The numerical predictions of eq. (28.30) turn out to be within roughly a factor
of 2 of the experimental results for metals, even though the model ignores the lattice
structure entirely. This is remarkably good agreement for a very simple model of a
metal. It shows that the quantum effects of Fermi–Einstein statistics are responsible
for a major part of the bulk modulus of metals.

28.9 Sommerfeld Expansion

While we have obtained important information about Fermi gases from the zero-
temperature limit of the Fermi function in the previous section, the behavior at
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non-zero temperatures is even more interesting. The difficulty in doing calculations for
T �= 0 is that the temperature dependence of the integrals in eqs. (28.12) and (28.13)
is not trivial to extract.

The problem was solved by the German physicist Arnold Sommerfeld (1868–1951).
His solution is known today as the Sommerfeld expansion, and it is the topic of the
current section. The results obtained from the Sommerfeld expansion are essential for
understanding the properties of metals.

First note that both eq. (28.12) and eq. (28.13) can be written in the form,

I =
∫ ∞

0

φ(ε)fF (ε)dε =
∫ ∞

0

φ(ε) (exp[β(ε − μ)] + 1)−1
dε (28.31)

where φ(ε) = DFD(ε) to calculate N , and φ(ε) = εDFD(ε) to calculate U .
Break the integral in eq. (28.31) into two parts, and use the identity in eq. (28.7)

to rewrite the integrand for ε < μ.

I =
∫ μ

0

φ(ε) (exp[β(ε − μ)] + 1)−1
dε

+
∫ ∞

μ

φ(ε) (exp[β(ε − μ)] + 1)−1
dε

=
∫ μ

0

φ(ε)
[
1 − (exp[−β(ε − μ)] + 1)−1

]
dε

+
∫ ∞

μ

φ(ε) (exp[β(ε − μ)] + 1)−1

=
∫ μ

0

φ(ε)dε −
∫ μ

0

φ(ε) (exp[−β(ε − μ)] + 1)−1
dε

+
∫ ∞

μ

φ(ε) (exp[β(ε − μ)] + 1)−1 (28.32)

In this equation, the first integral represents the contributions of a step function, while
the second and third integrals represent the deviations of the Fermi function from the
step function.

The next step is to substitute the dimensionless integration variable z = −β(ε − μ)
in the second integral, and z = β(ε − μ) in the third integral.

I =
∫ μ

0

φ(ε)dε − β−1

∫ βμ

0

φ(μ − β−1z) (ez + 1)−1
dz

+β−1

∫ ∞

0

φ(μ + β−1z) (ez + 1)−1
dz (28.33)

Recall that for low temperatures the chemical potential was claimed to be very
nearly equal to the Fermi energy. We will use the approximation that μ ≈ εF now,
and justify it later on the basis of the results of the Sommerfeld expansion.
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At low temperatures, βμ ≈ βεF = TF /T � 1. Since the upper limit in the second
integral in eq. (28.33) is large and the integrand goes to zero exponentially rapidly as
z → ∞, replacing the upper limit by infinity should be a good approximation.

I ≈
∫ μ

0

φ(ε)dε (28.34)

+β−1

∫ ∞

0

[
φ(μ + β−1z) − φ(μ − β−1z)

]
(ez + 1)−1

dz

Note that while the replacement of the upper limit of βμ in eq. (28.33) by infinity
is almost always an excellent approximation, it is not exact.

For the next step we will assume that the integrand in eq. (28.34) is analytic, so
that we can expand the function φ(μ + β−1z) in powers of z.

φ(μ + β−1z) =
∞∑

j=0

1
j!

φ(j)(μ)β−jzj (28.35)

The assumption of analyticity is essential to the Sommerfeld expansion. While the
density of states DFD(ε) is generally analytic in some region around the Fermi
energy, it is not analytic everywhere. This means that there are always small
corrections to the Sommerfeld expansion, in addition to the one that comes from
the extension of the upper limit of the integral in eq. (28.33) to infinity. These
corrections are so small that they are often not even mentioned in textbooks.
However, if the density of states is zero at ε = μ, all terms in the Sommerfeld
expansion vanish, and only the non-analytic corrections are left.

Inserting eq. (28.35) in eq. (28.34), we find

I =
∫ μ

0

φ(ε)dε

+β−1
∞∑

j=0

1
j!

φj(μ)β−j

∫ ∞

0

[
zj − (−z)j

]
(ez + 1)−1

dz

=
∫ μ

0

φ(ε)dε

+2
∞∑

n=0

1
(2n + 1)!

φ(2n+1)(μ)β−2n−2

∫ ∞

0

z2n+1 (ez + 1)−1
dz (28.36)

The integrals on the first line of eq. (28.36) vanish for even values of j, which led
us to define n = (j − 1)/2 for odd values of j and rewrite the sum as shown in the
second line.
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The dimensionless integrals in eq. (28.36) can be evaluated exactly (with a little
effort) to obtain the first few terms of the Sommerfeld expansion.

I =
∫ μ

0

φ(ε)dε +
π2

6
φ(1)(μ)(kBT )2 +

7π4

360
φ(3)(μ)(kBT )4 + · · · (28.37)

In eq. (28.37), φ(1)(μ) denotes the first derivative of φ(ε), evaluated at μ, and φ(3)(μ)
denotes the corresponding third derivative.

As we will see in the next section, the Sommerfeld expansion converges rapidly for
low temperatures.

28.10 General Fermi Gas at Low Temperatures

As discussed in Section 26.16 of the previous chapter, the first step in calculating the
properties of a Fermi gas is to use eq. (28.12) to find N as a function of T and μ,
and then invert the equation to obtain μ = μ(T,N). Using the Sommerfeld expansion,
eq. (28.37), derived in the previous section, we can expand eq. (28.12) to find N as a
power series in T .

N =
∫ ∞

0

DFD(ε) (exp[β(ε − μ)] + 1)−1
dε (28.38)

=
∫ μ

0

DFD(ε)dε +
π2

6
D

(1)
FD(μ)(kBT )2 +

7π4

360
D

(3)
FD(μ)(kBT )4 + · · ·

Recall from eq. (28.14) that the Fermi energy is defined as the zero-temperature
limit of the chemical potential

N =
∫ εF

0

DFD(ε)dε (28.39)

Since μ − εF is small at low temperatures, we can approximate the integral in
eq. (28.38) as

∫ μ

0

DFD(ε)dε ≈
∫ εF

0

DFD(ε)dε + (μ − εF )DFD(εF ) (28.40)

Putting this approximation into eq. (28.38), we find an equation for the leading term
in μ − εF .

μ − εF = −π2

6
(kBT )2D(1)

FD(μ)/DFD(εF ) + · · · (28.41)

We see that the deviation of the chemical potential from the Fermi energy goes to
zero as T 2 for low temperatures, justifying our earlier assertion that εF is a good
approximation for μ at low temperatures.
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The next step is to use eq. (28.41) to find a low-temperature expansion for the
energy. Defining the zero-temperature energy of the system to be

U0 =
∫ εF

0

DFD(ε)εdε (28.42)

the Sommerfeld expansion of eq. (28.13) can be written as

U = U0 + (μ − εF )εF DFD(εF ) (28.43)

+
π2

6

[
DFD(εF ) + εF D

(1)
FD(εF )

]
(kBT )2 + · · ·

Inserting eq. (28.41) for μ − εF , this becomes

U = U0 − π2

6
(kBT )2εF D

(1)
FD(εF ) (28.44)

+
π2

6

[
DFD(εF ) + εF D

(1)
FD(εF )

]
(kBT )2 + · · ·

= U0 +
π2

6
DFD(εF )(kBT )2 + · · ·

The heat capacity at constant volume is found by differentiating of eq. (28.44).

CV =
(

∂U

∂T

)
N,V

=
π2

3
DFD(εF )k2

BT + · · · (28.45)

Eq. (28.45) has two very interesting properties. First, it shows that as long as
DFD(εF ) does not vanish, the low-temperature heat capacity is proportional to the
temperature T . Since the low-temperature contributions of the phonons to the heat
capacity have a T 3 temperature-dependence, we can clearly separate the contributions
of the phonons and electrons experimentally.

Next, we have answered the question of why the heat capacity of materials does
not have a contribution of 3kB/2 from every particle, whether electrons or nuclei,
which would be expected from classical theory. We will see this explicitly below in
eq. (28.53).

Finally, eq. (28.45) shows that the only thing we need to know to calculate the low-
temperature heat capacity is the density of states at the Fermi energy. Or, turning the
equation around, by measuring the low-temperature heat capacity we can determine
the density of states at the Fermi energy from experiment.

28.11 Ideal Fermi Gas at Low Temperatures

While the equations for the specific heat derived so far in this chapter apply to a
system of fermions with any density of states, it is particularly instructive to look at
the special case of an ideal Fermi gas.
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Recall that the density of states for an ideal gas of electrons was given in eq. (28.15).

DFD(ε) =
V

2π2

(
2m

�2

)3/2

ε1/2 = Aε1/2 (28.46)

In eq. (28.46) we defined a constant

A =
V

2π2

(
2m

�2

)3/2

(28.47)

to simplify further calculations.
Eq. (28.38) for N becomes

N =
∫ μ

0

Aε1/2dε +
π2

6
A

1
2
μ−1/2(kBT )2 +

7π4

360
A

3
8
μ−5/2(kBT )4 + · · · (28.48)

=
2
3
Aμ3/2 +

π2

12
Aμ−1/2(kBT )2 +

7π4

960
Aμ−5/2(kBT )4 + · · ·

=
2
3
Aμ3/2

[
1 +

π2

8

(
kBT

μ

)2

+
7π4

640

(
kBT

μ

)4

+ · · ·
]

Since

N =
2
3
Aε

3/2
F (28.49)

Eq. (28.48) gives an equation for εF in terms of μ

ε
3/2
F ≈ μ3/2

[
1 +

π2

8

(
kBT

μ

)2

+
7π4

640

(
kBT

μ

)4
]

(28.50)

or μ in terms of εF :

μ ≈ εF

[
1 +

π2

8

(
kBT

μ

)2

+
7π4

640

(
kBT

μ

)4
]−2/3

(28.51)

≈ εF

[
1 − π2

12

(
kBT

εF

)2
]

= εF

[
1 − π2

12

(
T

TF

)2
]

Since a typical value of TF is of the order of 6 × 104K, the T 2-term in eq. (28.51)
is of the order of 10−4 at room temperature, confirming that the chemical potential
is very close to the Fermi energy at low temperatures. This also justifies the omission
of the next term in the expansion, which is of order (T/TF )4 ≈ 10−8.

The heat capacity can be obtained by inserting eq. (28.46) into eq. (28.45).

CV =
π2

2
NkB

(
T

TF

)
(28.52)
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This equation can be rewritten in a form that shows the effect of Fermi statistics on
the heat capacity.

CV =
3
2
NkB

(
π2

3
T

TF

)
(28.53)

The factor in parentheses is the quantum correction, which shows explicitly that the
Fermi heat capacity is much smaller than that of a classical ideal gas, as claimed in
the previous section.

We have seen in Chapter 25 that the specific heat due to lattice vibrations has a
T 3-behavior at low temperatures. Eq. (28.53) shows that when the density of states,
D(ε), is non-zero, there is an additional T -dependence, which dominates at very low
temperatures. This is indeed observed experimentally for metals. However, it is not
observed for insulators or semiconductors, for reasons we will discuss in the next
chapter.

28.12 Problems

Problem 28.1

Fermions in a two-level system (with degeneracy)

Consider a system of N independent fermions.
Assume that the single-particle Hamiltonians have only two energy levels, with energies
0 and ε. However, the two levels have degeneracies n0 and n1, which are, of course,
both integers.

1. First take the simple case of n0 = n1 = 1, with N = 1. Find the chemical poten-
tial, μ, as a function of temperature. What is the Fermi energy, εF = μ(T = 0)?

2. Now make it more interesting by taking arbitrary values of n0 and n1, but
specifying that N = n0. Again find the chemical potential, μ, as a function of
temperature for low temperatures. That is, assume that βε � 1. What is the
Fermi energy?

3. Keep arbitrary values of n0 and n1, but consider the case of N < n0. Again find
the chemical potential, μ, as a function of temperature for low temperatures. That
is, assume that βε � 1. What is the Fermi energy?

4. Keep arbitrary values of n0 and n1, but consider the case of N > n0. Again find
the chemical potential, μ, as a function of temperature for low temperatures. That
is, assume that βε � 1. What is the Fermi energy?

Problem 28.2

Fermions in a three-level system (with degeneracy)

Consider a system of N independent fermions.
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Assume that the single-particle Hamiltonians have three energy levels, with ener-
gies ε1, ε2, and ε3, where ε1 < ε2 < ε3. The three energy levels have degeneracies n1,
n2, and n3, which are, of course, integers. The values of the njs are to be left arbitrary.

1. First take the case of N = n1. Find the chemical potential, μ, for low tempera-
tures. What is the Fermi energy, εF = μ(T = 0)?

2. Now take the case of N = n1 + n2. Find the chemical potential, μ, for low
temperatures. What is the Fermi energy, εF = μ(T = 0)?

3. Next, consider the situation with n2 ≥ 2 and N = n1 + 1. Find the chemical
potential, μ, for low temperatures. What is the Fermi energy, εF = μ(T = 0)?

Problem 28.3

Ideal Fermi gas in two dimensions

Consider an ideal Fermi gas in two dimensions. It is contained in an area of dimensions
L × L. The particle mass is m.

1. Calculate the density of states.
2. Using your result for the density of states, calculate the number of particles as

a function of the chemical potential at zero temperature. (μ(T = 0) = εF , the
Fermi energy.)

3. Calculate the Fermi energy as a function of the number of particles.
4. Again using your result for the density of states, calculate the total energy of the

system at zero temperature as a function of the Fermi energy, εF .
5. Calculate the energy per particle as a function of the Fermi energy εF .

Problem 28.4

More fun with the Ideal Fermi gas in two dimensions

Consider the same two-dimensional, ideal Fermi gas that you dealt with in the previous
assignment. You will need the result of that assignment to do this one.

1. Calculate the average number of particles as a function of μ exactly. (This is one
of the few problems for which this can be done.)

2. Calculate μ as a function of N and T . Then find the high- and low-temperature
behavior of μ.

Problem 28.5

An artificial model of a density of states with a gap in the energy spectrum

Consider a system with the following density of states

D(ε) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 > ε
A(ε1 − ε) ε1 > ε > 0
0 ε2 > ε > ε1
A(ε − ε2) ε > ε2
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where A is a constant, and ε2 > ε1 > 0.

1. Find the Fermi energy εF = μ(T = 0) for the following three values of the total
number of particles, N .

(a) N = Aε21/4
(b) N = Aε21/2
(c) N = 3Aε21/4

2. For each of the three cases, find the specific heat at low temperatures from the
Sommerfeld expansion.

3. For one of the cases studied above, the Sommerfeld expansion for the spe-
cific heat can be summed exactly to all orders. And the answer is wrong!
Explain which case is being referred to, and why the Sommerfeld expansion has
failed.

Problem 28.6

An artificial model of a density of states with a gap in the energy
spectrum—continued

Again consider a system with the following density of states:

D(ε) =

⎧⎪⎪⎨
⎪⎪⎩

0 0 > ε
A(ε1 − ε) ε1 > ε > 0
0 ε2 > ε > ε1
A(ε − ε2) ε > ε2

where A is a constant, and ε2 > ε1 > 0. The number of particles is given by N = Aε21/2,
so the Fermi energy is εF = (ε1 + ε2)/2.

In the last assignment we found that the Sommerfeld expansion gives incorrect
results for this model. In this assignment we will calculate the low-temperature
behavior correctly.

1. Show that if ε1 � kBT , that μ = εF is a very good approxmation, even if kBT ≈
ε2 − ε1.

2. Calculate the energy of this model as a function of temperature for low temper-
atures. Assume that ε1 � ε2 − ε1 � kBT .

3. Calculate the heat capacity of this model as a function of temperature for low
temperatures from your answer to the previous question. Assume that ε1 � ε2 −
ε1 � kBT .



29

Insulators and Semiconductors

Mankind is a catalyzing enzyme for the transition from a carbon-based intel-
ligence to a silicon-based intelligence.

Girard Bricogne

Although the ideal gas of fermions is a useful model for the behavior of metals, real
systems deviate from this model in a very important way, in that real energy spectra
contain gaps in which no energy levels occur. When the Fermi energy lies in one of
those gaps, the behavior of the electrons is qualitatively different from that described
in the previous chapter. Such materials do not have the high electrical conductivity
of metals. They are insulators or semiconductors, and their properties are the subject
of the current chapter.

The origin of the strange band gaps that arise in the electron density of states
in real materials is that the regular arrangement of the nuclei in a crystal lattice
creates a periodic potential. This affects the energy levels of the electrons and gives
rise to gaps in the energy spectrum. The mechanism by which the gaps arise can
be understood from two perspectives. The first argument initially assumes that the
atoms are very far apart, so that the electrons cannot easily jump from one atom to
the next. Since an electron is tightly bound to a nucleus, this is known as the ‘tight
binding approximation’. The second argument for the existence of energy gaps starts
from the opposite extreme, where the electrons act almost like an ideal gas, but are
presumed to be subject to a very weak periodic potential. This is known as the ‘nearly
free electron approximation’. In both cases, gaps in the energy spectrum occur due to
the periodicity of the lattice.

In the following sections we will explore both ways of seeing how gaps arise in the
energy spectrum in a crystal. After that we will investigate the consequences of energy
gaps, which will lead us to the properties of insulators and semiconductors.

29.1 Tight-Binding Approximation

Begin by considering a single, isolated atom. Since we know that electrons in isolated
atoms have discrete energy levels, the energy spectrum of a single atom will look
qualitatively like the diagram on the far left of Fig. 29.1.
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Fig. 29.1 Schematic plot of the energy levels in a crystal. The diagram on the far left shows

the energy spectrum of an isolated atom. The second diagram shows the effect of bringing two

atoms close together, and the third diagram corresponds to three neighboring atoms. The diagram

on the far right shows the band structure that arises when the lattice constant is of the order of

nanometers, as in a real crystal. The 1020 or more levels make each band a quasi-continuum.

If we bring a second atom to within a few tenths of a nanometer of the first, the
wave functions will overlap, and the energy levels will be split according to quantum
perturbation theory, as shown in the second diagram in Fig. 29.1.

If there are three atoms close together, each energy level will split into three levels,
as shown in the third diagram in Fig. 29.1.

Now assume that we have a crystal; that is, a regular array of atoms in which
the neighboring atoms are separated by a few tenths of a nanometer. If the crystal
contains 1020 atoms, the energy levels will be split into 1020 closely spaced energy
levels, which will form a quasi-continuum. Such a quasi-continuum of energy levels is
called a ‘band’. This is shown schematically in the diagram on the far right of Fig. 29.1.

In the schematic diagram in Fig. 29.1, the spreading of the energy levels has been
large enough to merge the top two single-atom energy levels into a single band.
However, the gap between the bottom two two single-atom energy levels remains,
despite the spreading of the energy levels into bands. These gaps, or ‘band gaps’,
represent forbidden energies, since there are no single-particle wave functions with
energies in the gaps.

This qualitative description of how gaps arise in the single-particle excitation
spectrum can be made quantitative by applying perturbation theory to the weak
overlap of the wave functions of nearly isolated atoms. Since the electrons are tightly
bound to individual atoms when the overlap is very weak, this is known as the ‘tight-
binding approximation’. We will not go into the details of the theory here, since our
purpose is only to understand qualitatively how gaps in the excitation spectrum arise.

Before going on to discuss the opposite extreme, in which electrons experience
only a weak periodic potential due to the crystal lattice, we need some mathematics.
The following section introduces Bloch’s theorem for a particle in a periodic potential
(Felix Bloch (1905–1983), Swiss physicist, Nobel Prize 1952). Once armed with this
theorem, we will discuss the effects of the crystal lattice on the single-electron energy
spectrum.
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29.2 Bloch’s Theorem

For simplicity, we will again only treat the one-dimensional case. The three-
dimensional case is not really more difficult, but the necessary vector notation makes
it look more complicated than it is.

Consider a single particle in a periodic potential, V (x), so that the Hamiltonian is
given by

H =
p2

2m
+ V (x) (29.1)

Denoting the period by a, we have

V (x + a) = V (x) (29.2)

Define translation operators, Tn, for any integer n. such that

TnH(p, x) = H(p, x + na) = H(p, x) (29.3)

Translation operators have the property that they can be combined. For an arbitrary
function f(x),

TnTmf(x) = Tnf(x + ma) = f(x + ma + na) = Tm+nf(x) (29.4)

or

TnTm = Tm+n (29.5)

The translation operators also commute with each other

[Tn, Tm] = TnTm − TmTn = 0 (29.6)

and every Tn commutes with the Hamiltonian

[Tn,H] = TnH − HTn = 0 (29.7)

Therefore, we can define wave functions that are simultaneously eigenfunctions of all
the translation operators and the Hamiltonian.

Denote a single-particle eigenfunction by φ(x), the eigenvalue of Tn by Cn.

Tnφ(x) = φ(x + a) = Cnφ(x) (29.8)

From eq. (29.5), we can see that

TnTmφ(x) = CnCmφ(x) = Tm+nφ(x) = Cn+mφ(x) (29.9)

or

CnCm = Cn+m. (29.10)
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We can solve eq. (29.10) for Cn in terms of a constant k,

Cn = exp(ikna) (29.11)

where k is a real number. It is easy to confirm that this is a solution by inserting
eq. (29.11) into eq. (29.10). The reason that k must be real is that φ(x) – and therefore
Cn – must be bounded for very large (positive or negative) values of x.

The next step is to note that the eigenfunction can be written as

φk(x) = exp(ikx)uk(x) (29.12)

where uk(x) is periodic.

uk(x + a) = uk(x) (29.13)

The eigenfunctions φk(x) also have an important periodicity with respect to the
wave number k. If we define a vector

K =
2π

a
(29.14)

and consider the wave function

φk+K(x) = exp[i(k + K)x]uk+K(x) (29.15)

then

φk(x) = exp(ikx)uk(x) (29.16)

= exp[i(k + K)x] exp(−iKx]uk(x)

= exp[i(k + K)x]uk+K(x)

= φk+K(x)

It is easy to confirm that uk+K(x) = exp(−iKx)uk(x) is a periodic function of x with
period a.

By extending this argument to φk+qK(x), where q is any integer, we see that εk

must be a periodic function of k with period K = 2π/a.

εk = εk+K (29.17)

The following section uses Bloch’s theorem to calculate the single-particle excita-
tion spectrum for nearly free electrons. The periodicity of εk will be crucial to the
discussion.

29.3 Nearly-Free Electrons

In this section we will look at the consequences of a weak periodic potential for a gas
of non-interacting electrons. We will begin by assuming that the potential is exactly
zero, and then investigate the effects of turning on a periodic potential, such as that
due to a regular crystal lattice.
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The discussion will consist of three stages:

1. Reminder of the energy spectrum of a non-interacting particle in a box.
2. The effects of Bloch’s theorem on the representation of the energy spectrum of

non-interacting particles in the limit that the amplitude of the periodic potential
vanishes.

3. The effects of turning on a periodic potential with a small amplitude.

29.3.1 Free Electrons

We begin with the energy levels for free electrons, which is given in eq. (26.12) of
Chapter 26.

εk =
�

2

2m
k2 (29.18)

Here

k =
nπ

L
(29.19)

and n is a positive integer.
Fig. 29.2 shows a plot of εk as a function of the wave number k.

29.3.2 The ‘Empty’ Lattice

The next step is to look at the consequences of the periodicity of the lattice on the
energy spectrum, while keeping the amplitude of the periodic potential equal to zero.
This might seem rather strange, since a potential of amplitude zero cannot change the
energy of a state. Nevertheless, the representation of the energy can change.

The representation of the energy spectrum in a periodic potential differs from that
shown in Fig. 29.2 because of the periodicity in k-space imposed by eq. (29.17). This
representation is known as the ‘empty lattice,’ because even though we are assuming
periodicity, there is nothing there to give rise to a non-zero potential.

The wave functions in the empty lattice representation can be written in the form
given in eq. (29.12). The empty-lattice energy, εk, is periodic in k, as indicated in
eq. (29.17). The empty-lattice energy spectrum is plotted in Fig. 29.3.

ek

k0

Fig. 29.2 Free electron energy spectrum.



356 Insulators and Semiconductors
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Fig. 29.3 Empty lattice energy spectrum

Fig. 29.3 shows how the periodicity indicated by eq. (29.17) affects the energy
spectrum. The parabolic spectrum shown in Fig. 29.2 is repeated at intervals of K =
2π/a along the entire k-axis. This duplication has the consequence that all information
about the energy spectrum is contained in any region of length K = 2π/a along the
axis. It is conventional to choose the region from −π/a to π/a. This region is called the
Brillouin Zone, after Léon Brillouin (French physicist (1889–1969), American citizen
after 1949). In Fig. 29.3, the limits of the one-dimensional Brillouin Zone are indicated
by two vertical dotted lines.

In more than one dimension, a more general definition is used for the Brillouin Zone.
The periodicity in �k-space is defined by a set of three vectors, { �K1, �K2, �K3}. The set
of all vectors of the form n1

�K1 + n2
�K2 + n3

�K3, where the njs are integers, forms
a ‘reciprocal lattice’. The Brillouin Zone is then defined as including those points
closer to the origin in �k-space than to any other point in the reciprocal lattice. For
the one-dimensional case, the reciprocal lattice consists of the points, 2nπ/a, where
n is an integer. The points between −π/a and π/a then satisfy this definition of
the Brillouin Zone.

29.3.3 Non-Zero Periodic Potential

Now we are going to consider the effects of making the amplitude of the periodic
potential non-zero.

If we consider Fig. 29.3, we see that there are crossings of the energy levels where
k = nπ/a, where n is an integer. These crossings represent degeneracies, where two
states have the same energy (in the original representation, just traveling waves going
in opposite directions). A non-zero periodic potential splits the degeneracy at these
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k
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Fig. 29.4 Band structure with energy gaps occurring at k = π/a, 0, and −π/a.

crossings, according to the usual result of quantum perturbation theory. After the
splitting, the energy spectrum looks like Fig. 29.4.

The degeneracies seen in Fig. 29.3 all come from the symmetry that εk = εk+K .
The value of the empty-lattice representation is that it highlights those points at
which the splitting due to a periodic lattice removes the degeneracies.

After the splitting of the crossing degeneracies, gaps in the energy spectrum open
up. There are now ranges of energies for which there are no solutions to the wave-
function equation.

29.4 Energy Bands and Energy Gaps

The consequences of both the tight-binding and the nearly-free electron analyses are
qualitatively the same. In certain ranges of energies, there exist single-particle energy
states. These energy ranges are called ‘bands’. In other energy ranges, no such states
are found. These energy ranges are called ‘gaps’.

Both the tight-binding and the nearly-free electron analysis can be used as starting
points for quantitative calculations of the energy spectrum and the density of states.
However, that would take us beyond the scope of this book.

The existence of energy gaps is clearly an important feature of the density of states.
As we will see in the next section, when the Fermi energy falls within a band gap, the
behavior of the system differs dramatically from what we found for the free-electron
model.
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29.5 Where is the Fermi Energy?

When the energy spectrum has band gaps, the behavior of the material will depend
strongly on where the Fermi energy is – specifically, on whether the Fermi energy lies
within a band or within a gap between bands. This, in turn, depends on whether the
bands near the Fermi energy are empty, completely filled, or partially filled at zero
temperature. If there is a partially filled band at T = 0, the Fermi energy will lie at
the boundary between the filled and empty states. If there are only completely filled
and completely empty bands at T = 0, the Fermi energy will lie halfway between the
highest filled band and the lowest empty band.

To understand why the behavior of a material depends strongly on where the Fermi
energy is, first recall that when a single-particle state is filled, no other electron can
enter that state. If all single-particle states at a given energy are filled, nothing can
happen at that energy. Neither can anything happen at an energy for which all states
are empty. It is only when electrons can change states without changing their energy
significantly that they can move from one area to another within the system.

The explicit dependence of the electrical properties of systems on their band
structures gives rise to the differences between metals, insulators, and semiconductors,
which will be discussed in the following sections.

29.6 Fermi Energy in a Band (Metals)

If the Fermi energy falls within a band, it requires only a tiny amount of thermal
energy to raise an electron into an empty energy level with a slightly higher energy.
The electron is then able to move to other states with the same energy in different parts
of the system. Since electrons are charged, their motion is electric current; systems
with Fermi energies that fall within a band are metals.

In Chapter 28 we found from the Sommerfeld expansion that the specific heat at
low temperatures was given by eq. (28.45).

CV =
π2

3
DF (εF )k2

BT (29.20)

For free electrons, this gave the particular result given in eq. (28.52).
If the Fermi energy lies in one of the energy bands, eq. (29.20) still holds. The only

change from the free electron result is quantitative, due to the change in the density
of single-electron states at the Fermi energy. For some important conductors, such
as copper, silver, and gold, the free electron results are within 40% of the measured
values of the specific heat at low temperatures. For other metals, the magnitude of the
change can be quite large—up to an order of magnitude. The details of band structure
that give rise to these differences can be quite interesting, but go beyond the scope of
this book.

If the Fermi energy falls in an energy gap, the behavior of the system is qualitatively
different from that of a metal, and we find insulators and semiconductors. Their
properties are dramatically different from those of metals—and from each other! We
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will consider each case separately in the following sections, but first we will discuss the
generic equations that govern both insulators and intrinsic semiconductors (defined
below).

29.7 Fermi Energy in a Gap

When there is an energy gap between the highest filled single-particle state and the
lowest empty one, the Fermi energy must be exactly in the middle of the gap. This is
a very general principle, which was already implicit in the calculations for the cases
of discrete sets of energy levels that were treated in Chapter 28. To see that this is so,
introduce a specific model for which the density of states is given by

D(ε) =

⎧⎨
⎩

A(ε − εC)a ε > εC

0 εC > ε > εV

B(εV − ε)b εV > ε,
(29.21)

where A, B, a, and b are positive constants. The usual values of the exponents are
a = b = 1/2—the demonstration of which is left as an exercise for the reader—but for
now we will keep the notation general.

The subscripts C and V in (29.21) refer to the ‘conduction’ (upper) and ‘valence’
(lower) bands. Conduction will occur only in so far as electrons are thermally excited
from the valence band into the conduction band.

Since we are interested in very low temperatures when calculating the Fermi energy,
states with energies much greater than εC are nearly empty, while those with energies
much less than εV are nearly full. Therefore, the form of the density of states away
from the gap is often unimportant.

It might seem extremely improbable that the filled single-particle state with the
highest energy (at T = 0) is exactly at the top of a band, while the lowest empty
state is at the bottom of the next higher band. Actually, it is quite common. The
reason is most easily seen from the tight-binding picture. A band is formed from
the splitting of atomic energy levels. If these energy levels are filled, then the bands
states will also be filled. If the energies in a band do not overlap the energies of any
other band, it will be completely filled, while the higher bands will be empty.

As usual, we will use eq. (26.61), which gives the number of particles N as a
function of μ, to find the chemical potential.

N =
∫ ∞

0

D(ε) (exp[β(ε − μ)] + 1)−1
dε (29.22)

By our assumptions, the lower band is exactly filled at zero temperature.

N =
∫ εV

0

D(ε)dε (29.23)
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Subtracting eq.(29.23) from eq.(29.22), we can eliminate N from the equation for
the chemical potential.

0 =
∫ ∞

εC

D(ε) (exp[β(ε − μ)] + 1)−1
dε +

∫ εV

0

D(ε)
[
(exp[β(ε − μ)] + 1)−1 − 1

]
dε

(29.24)

Using the identity from Section 28.3, we can rewrite eq. (29.24) in a form that
shows the equality between the number of particles taken out of the lower band and
the number of particles added to the upper band.∫ ∞

εC

D(ε) (exp[β(ε − μ)] + 1)−1
dε =

∫ εV

0

D(ε) (exp[−β(ε − μ)] + 1)−1
dε (29.25)

Anticipating that μ ≈ εF = (εH + εL)/2 at low temperatures, we see that the
exponentials in the denominators of both integrands are large. This allows us to
aproximate eq. (29.25) as

A

∫ ∞

εC

(ε − εC)a exp[−β(ε − μ)]dε = B

∫ εV

−∞
(εV − ε)b exp[β(ε − μ)]dε (29.26)

where we have inserted the approximate form for the density of states in eq. (29.21). We
have also changed the lower limit of the integral on the right to minus infinity, since the
exponential in the integrand makes the lower limit unimportant at low temperatures.

We do not need to evaluate the integrals in eq. (29.26) explicitly at this point, but
we do need to extract the β-dependence. We do this by defining new variables for the
integral on the left of eq. (29.26),

x = β(ε − εC) (29.27)

and for the integral on the right,

y = −β(ε − εV ) (29.28)

Eq. (29.26) then becomes

A exp (β(μ − εC)) β−1−a

∫ ∞

0

xa exp[−x]dx =

B exp (β(εV − μ)) β−1−b

∫ ∞

0

yb exp[−y]dy (29.29)

Now bring the exponentials with μ to the left side of the equation.

exp (β(2μ − εC − εV )) =

⎛
⎜⎜⎝

B

∫ ∞

0

yb exp[−y]dy

A

∫ ∞

0

xa exp[−x]dx

⎞
⎟⎟⎠ (kBT )b−a (29.30)
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Denoting the dimensionless constant X by

X =
B

∫ ∞

0

yb exp[−y]dy

A

∫ ∞

0

xa exp[−x]dx

(29.31)

we find

μ =
1
2
(εC + εV ) +

kbT

2
(b − a) ln(kbT ) +

kbT

2
lnX (29.32)

Clearly, the Fermi energy is given by

εF = lim
T→0

μ =
1
2
(εC + εV ) (29.33)

for any values of the constants A, B, a, and b.
As mentioned at the beginning of this section, the most usual values of the

exponents are a = b = 1/2. For this case, eq. (29.32) simplifies.

μ =
1
2
(εC + εV ) +

kbT

2
ln
(

B

A

)
(29.34)

The calculation in this section also gives us an explicit estimate for the number
of electrons in partially filled energy levels that can contribute to an electric current.
The number of electrons that are thermally excited to the upper band is given by the
first term on the right of eq. (29.22).

Ne =
∫ ∞

εC

D(ε) (exp[β(ε − μ)] + 1)−1
dε (29.35)

≈
∫ ∞

εC

D(ε) exp[−β(ε − μ)]dε

≈ exp(−β(εC − εV )/2)
∫ ∞

εC

D(ε) exp[−β(ε − εC)]dε

≈ exp(−β(εC − εV )/2)A
∫ ∞

εC

(ε − εC)1/2 exp[−β(ε − εC)]dε

≈ exp(−β(εC − εV )/2)A
∫ ∞

0

(x/β)1/2 exp[−x]β−1dx

≈ exp(−β(εC − εV )/2)A(kBT )3/2

∫ ∞

0

x1/2 exp[−x]dx

≈ A
√

π

2
(kBT )3/2 exp(−β(εC − εV )/2)
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The factor exp(−β(εC − εV )/2) in the last line of eq. (29.35) shows that the number
of electrons in the upper band will be exponentially small when the band gap εgap =
εC − εV is much greater than kBT .

For an insulator, the band gap, εgap, between the highest filled (‘valence’)
and lowest empty (‘conduction’) band is large; that is, greater than roughly 3 eV .
The reason for the choice of this (somewhat arbitrary) number is that a band
gap of 3 eV implies that at room temperature (T = 300K), βεgap/2 ≈ 58, so that
exp(−βεgap/2) ≈ 6.5 × 10−26. This factor in eq. (29.35) is so small that essentially no
electrons are found in the conduction band of an insulator with a band gap of 3 eV
or greater. Without conduction electrons, no current can flow, and the material is an
insulator.

29.8 Intrinsic Semiconductors

A rough definition of a pure (or intrinsic) semiconductor is a material with a band
structure like an insulator, but with a smaller band gap. Examples are given in
Table 29.1.

For an intrinsic semiconductor like germanium (Ge), the factor of exp(−βεgap/2)
in eq. (29.35) is about exp(−βεgap/2) ≈ exp(−13) ≈ 2 × 10−6 at room temperature
(300K). While this value is small, there are still a substantial number of electrons
that are thermally excited. The conductivity of pure germanium is much smaller than
that of the good insulator, but it is not negligible.

29.9 Extrinsic Semiconductors

The main reason why semiconductors are so interesting—and extraordinarily useful
in modern electronics—is that their electrical properties are very strongly influenced
by the presence of relatively small concentrations of impurities. Indeed, that property
provides a better definition of a semiconductor than having a small band gap.

Since the word ‘impurities’ tends to have negative connotations that would not be
appropriate in this context, impurities in semiconductors are generally called ‘dopants’,
and impure semiconductors are called ‘extrinsic’ semiconductors. There are two basic

Table 29.1 Band gaps of semiconductors. The third column expresses the band gap in units of

kBT at room temperature.

Material εgap (eV ) εgap/kBT

Ge 0.67 26
Si 1.11 43
GaAs 1.43 55
GaSb 0.7 27
InAs 0.36 24
InN 0.7 27
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classes of dopant: donors and acceptors. The distinction is based on whether the
particular dopant has more (donor) or fewer (acceptor) electrons than the intrinsic
semiconductor.

In the following two subsections, the two kinds of dopant are discussed. To have a
concrete example, we will use silicon (Si) in both cases as the intrinsic semiconductor
that is being doped.

29.9.1 Donor Impurities

Phosphorus (P) is an example of a donor impurity for silicon (Si). The phosphorus
ion, P+, goes into the lattice in place of a Si atom, keeping its net positive charge. The
remaining electron from the P atom goes into the conduction band. A semiconductor
that contains donor dopants is called an ‘n-type’ semiconductor because the dopants
provide extra carriers with negative charge.

Since there is a Coulomb attraction between the net positive charge on the P+

ion in the lattice and the donated electron in the conduction band, the combination
looks very much like a hydrogen atom. The main differences are that the effective
mass of electrons in the conduction band differs from that of a free electron, and
there is a screening effect due to the dielectric constant of Si. The combination of
these two effects results in a bound state with an energy of about −0.044 eV , relative
to the bottom of the conduction band. This donor state is close to the bottom of
the conduction band, since the binding energy is much smaller than the band gap
of 1.12 eV . Since the extra electron went into the conduction band, the donor-state
energy lies in the band gap, about 0.044 eV below the bottom of the conduction
band.

Since the binding energy is only about half of kBT at room temperature for
the example of P impurities in Si, even without calculations we can see that
many more electrons will be excited into the conduction band with dopants than
without.

29.9.2 Acceptor Impurities

Boron (B) is an example of an acceptor impurity for Si. The B atom goes into the
lattice in place of a Si atom and binds an electron from the valence band, creating a B−

ion. Since an electron was removed from the valence band, the band is no longer full.
The state with the missing electron is known as a ‘hole’. For reasons that go beyond
the scope of this book, the missing electron acts just like a positive mobile charge.
A semiconductor that contains acceptor dopants is called a ‘p’-type semiconductor,
because the dopants provide extra carriers with positive charge.

In analogy to the situation for donors, the mobile positive hole in the valence band
is attracted to the negative B− ion fixed in the lattice. Again, this creates a new
localized state with an energy in the band gap. However, for ‘p’-type semiconductors
the state is located just above the top of the valence band (about 0.010 eV above for
B in Si). The equations for calculation of the energy are essentially the same as those
for the bound state in ‘n’-type semiconductors.
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29.10 Semiconductor Statistics

Although electrons are fermions, so that we might expect the equations for Fermi
statistics to apply to the impurity states, the truth is rather more interesting. The
occupation of the donor and acceptor states is determined by what we might call
‘semiconductor statistics’, which we have not seen before in this book.

The reason for the difference between semiconductor statistics and Fermi statistics
arises from two features of the impurity energy levels:

1. The impurity levels in doped semiconductors are two-fold degenerate because
there are both spin-up and spin-down states.

2. The two states in a given level cannot both be occupied, because of a strong
Coulomb repulsion.

These features mean that the probabilities for occupying the two degenerate states
that make up the impurity energy level cannot be regarded as independent: the
possibility of the energy level containing two electrons is excluded. Because of the lack
of independence of the two impurity states, the derivation of semiconductor statistics
given in the next subsection calculates the occupation of the entire energy level.

29.10.1 Derivation of Semiconductor Statistics

To derive semiconductor statistics—that is, the occupation number for an impurity
energy level—we return to eq. (26.31) in Chapter 26.

Z =
∏

ε

∑
nε

exp[−β(ε − μ)nε] (29.36)

For an donor energy level with energy εd, the sum over nεd
must only contain terms

corresponding to (1) both states empty, (2) only the spin-up state occupied, and (3)
only the spin-down state occupied. Double occupancy of the donor energy level is
excluded due to the Coulomb repulsion energy.

(29.37)∑
nεd

exp[−β(εd − μ)nε] = exp[0] + exp[−β(εd − μ)] + exp[−β(εd − μ)]

= 1 + 2 exp[−β(εd − μ)]

Inserting eq. (29.37) in eq. (26.44) for the average occupation number, we find

〈nε〉 =

∑
nε

nε exp[−β(ε − μ)nε]∑
nε

exp[−β(ε − μ)nε]
(29.38)

=
2 exp[−β(εd − μ)]

1 + 2 exp[−β(εd − μ)]

=
[
1
2

exp[β(εd − μ)] + 1
]−1
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The extra factor of 1/2 in the denominator of the last line in eq. (29.38) distinguishes
semiconductor statistics from fermion statistics. Naturally, the single-particle states
in semiconductor electron bands still obey Fermi–Dirac statistics.

29.10.2 Simplified Illustration of Semiconductor Statistics

As an example of the consequences of semiconductor statistics, we will first consider a
simplified model in which there are Nd donor impurities with a corresponding energy
level εd, which lies slightly below the bottom of the conduction band at εC . We
will assume that the valence band is filled, so that we can ignore it. To simplify
the mathematics and the interpretation of the results, the conduction band will be
approximated by assigning all NC states the same energy, εC—not because it is realistic
(it is not), but to show the effects of semiconductor statistics. A more realistic model
will be presented in the next subsection.

As was the case for problems with either Fermi–Dirac or Bose–Einstein statistics,
the first task is to find the Fermi energy and the chemical potential. The equation
governing the chemical potential is, as usual, the equation for the total number of
particles. Since each donor impurity contributes a single election, the total number of
electrons is equal to Nd, the number of donor levels.

N = Nd = Nd

[
1
2

exp[β(εd − μ)] + 1
]−1

+ NC [exp[β(εC − μ)] + 1]−1 (29.39)

Note that the electrons in the conduction band still obey Fermi–Dirac statistics.
We might have imagined that the Fermi energy coincides with the energy of the

impurity level, εd, because of the two-fold degeneracy and single occupancy at T = 0.
However, due to the exclusion of double occupancy of the impurity level, the Fermi
energy turns out to be half way between the impurity-state energy and the bottom
of the conduction band, εF = (εC + εd)/2. We will assume that this is true in the
following derivation of the Fermi energy, and confirm it by the results of the calculation.

To solve eq. (29.39), we can use a variation on the identity in eq. (28.7).

Nd [2 exp[−β(εd − μ)] + 1]−1 = NC [exp[β(εC − μ)] + 1]−1 (29.40)

At low temperatures, since we expect μ ≈ (εd + εC)/2, we have both β(μ − εd) � 1
and β(εC − μ) � 1. This means that the exponentials dominate in both denominators
in eq. (29.40), and the neglect of the ‘+1’ in both denominators is a good approxima-
tion.

Nd

2
exp[β(εd − μ)] ≈ NC exp[−β(εC − μ)] (29.41)

We can solve this equation for the chemical potential.

μ ≈ εC + εd

2
+

1
2
kBT ln

(
Nd

2NC

)
(29.42)
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Since the Fermi energy is the zero temperature limit of the chemical potential, we
can immediately see from eq. (29.42) that

εF =
εC + εd

2
(29.43)

On the other hand, because the difference in energy between εC and εd can be of the
order of kBT , the second term in eq. (29.42) is not always negligible. There are usually
far fewer impurities than conduction states, and we can easily have Nd ≈ 10−5NC . The
second term in eq. (29.42) would be roughly −12 kBT . To see how significant this effect
is, we need to calculate the occupancy of the donor levels.

〈nd〉 = Nd

[
1
2

exp [β (εd − μ)] + 1
]−1

(29.44)

Inserting eq. (29.42) for the chemical potential, we find

〈nd〉 ≈ Nd

[
1
2

exp
[
β

(
εd − εC + εd

2

)
− 1

2
ln
(

Nd

2NC

)]
+ 1
]−1

(29.45)

or

〈nd〉 ≈ Nd

[
1
2

(
2NC

Nd

)1/2

exp
[
−β

(
εC − εd

2

)]
+ 1

]−1

(29.46)

There are two competing factors in the first term in the denominator of eq. (29.46).
While the factor of exp [−β(εC − εd)/2] can be small for very low temperatures, for
As in Ge at room temperature it has a value of about 0.6. On the other hand, if
Nd ≈ 10−5NC , the factor of

√
2NC/Nd ≈ 450, so that it would dominate, making the

occupation of the donor state quite small. Under such circumstances, almost all of the
donor levels would be empty, and the electrons would be in the conduction band.

Note that the emptying of the donor levels is an entropic effect. There are so many
more states in the conduction band that the probability of an electron being in a
donor level is very small, even though it is energetically favorable. This feature is not
an artifact of the simple model we are using for illustration in this section; it is a real
feature of semiconductor physics.

In the next section we will consider a (slightly) more realistic model that removes
the unphysical assumption of an infinitely thin conduction band.

29.10.3 A More Realistic Model of a Semiconductor

Although our neglect of the valence band in the model used in the previous subsection
is often justifiable, giving all states in the conduction band the same energy is certainly
not. In this subsection, we will introduce a model that is realistic enough to bear
comparison with experiment – although we will leave such a comparison to a more
specialized book.

We will assume the donor levels all have energy εd, as in Subsection 29.10.2.
However, we will model the conduction band by a density of states as in eq. (29.21).
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The total density of states can then be written as

D(ε) =
{

A(ε − εC)1/2 ε ≥ εC

Ndδ(ε − εd) ε < εC
(29.47)

Since only single-particle states near the bottom of the conduction band will be
occupied, the upper edge of the band is taken to be infinity.

The equation for the total number of donor electrons, which gives us the chemical
potential, is then

Nd = Nd

[
1
2

exp[β(εd − μ)] + 1
]−1

(29.48)

+
∫ ∞

εC

A(ε − εC)1/2
[
(exp[β(ε − μ)] + 1)−1 − 1

]
dε

As in the previous section, we will again use a variation on the identity in eq. (28.7)
to simplify the equation. We will also introduce the same dimensionless variable defined
in eq. (29.27).

Nd [2 exp[−β(εd − μ)] + 1]−1 = A exp (β(μ − εC)) β−1−a

∫ ∞

0

x1/2 exp[−x]dx (29.49)

Since we can evaluate the integral, this becomes

Nd [2 exp[−β(εd − μ)] + 1]−1 =
A
√

π

2
(kBT )3/2 exp (β(μ − εC)) (29.50)

The Fermi energy again turns out to be half way between the energy level of the
donor state and the bottom of the conduction band.

εF =
εd + εC

2
(29.51)

The remaining behavior of this more realistic model is qualitatively the same as
that of the simplified illustration in the previous subsection. The details will be left
to the reader.

29.11 Semiconductor Physics

This brings us to the end of our introduction to insulators and semiconductors. The
field of semiconductors, in particular, is extremely rich. We have covered the bare
basics, but we have not even mentioned how semiconductors can be used to create
lasers or the transistors that are the basis of all modern electronics. However, this
introduction should be sufficient preparation to read a book on semiconductors without
too much difficulty. The field is both fascinating and extraordinarily important in
today’s world.
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Phase Transitions and the Ising
Model

Magnet, n. Something acted upon by magnetism.
Magnetism, n. Something acting upon a magnet.
The two definitions immediately foregoing are condensed from the works of
one thousand eminent scientists, who have illuminated the subject with a great
white light, to the inexpressible advancement of human knowledge.

Ambrose Bierce, in The Devil’s Dictionary

The Ising model is deceptively simple. It can be defined in a few words, but it displays
astonishingly rich behavior. It originated as a model of ferromagnetism in which the
magnetic moments were localized on lattice sites and had only two allowed values. This
corresponds, of course, to a spin-one-half model, but since it is tiresome to continually
write factors of �/2, it is traditional to take the values of a ‘spin’ σj , located on lattice
site j to be

σj = +1 or − 1 (30.1)

The energy of interaction with a magnetic field also requires a factor of the magnetic
moment of the spin, but to make the notation more compact, everything will be
combined into a single ‘magnetic field’ variable h, which has units of energy.

Hh = −hσj (30.2)

Eq. (30.2) implies that the low-energy state is for σj = +1 when h > 0.

There should not be any confusion of the ‘h’ in eq. (30.2) with Planck’s constant,
because the latter does not appear in this chapter.

The energy of interaction between spins on neighboring lattice sites, j and k, is
given by the product of the spins.

HJ = −Jσjσk (30.3)



The Ising Chain in a Magnetic Field (J = 0) 369

The constant J is also taken to have units of energy. The low energy states of
eq. (30.3) are σj = σk = +1 and σj = σk = −1. This form of interaction is also called
an ‘exchange’ interaction, due to the role of exchanging electrons in its derivation from
the quantum properties of neighboring atoms. That derivation is, of course, beyond
the scope of this book.

If we put the two kinds of interactions together on a lattice, we can write the
Hamiltonian as

H = −J
∑
〈j,k〉

σjσk − h

N∑
j=1

σj (30.4)

where the notation 〈j, k〉 denotes that the sum is over nearest-neighbor pairs of sites.
In the rest of this chapter we will discuss the remarkable properties of the model
described by eq. (30.4).

30.1 The Ising Chain

The first calculations on the Ising model were carried out by Ernst Ising (German
physicist, 1900–1998), who was given the problem by his adviser, Wilhelm Lenz
(German physicist, 1888–1957). In 1924 Ising solved a one-dimensional model with
N spins, in which each spin interacted with its nearest neighbors and a magnetic field.

H = −J
∑

j

σjσj+1 − h
∑

j

σj (30.5)

This model is also referred to as an ‘Ising chain’. The limits on the first sum have not
been specified explicitly in eq. (30.5) to allow it to describe two kinds of boundary
conditions.

1. Open boundary conditions
The first sum goes from j = 1 to j = N − 1. This corresponds to a linear chain
for which the first spin only interacts with the second spin, and the spin at j = N
spin only interacts with the spin at j = N − 1.

2. Periodic boundary conditions
A spin σN+1 = σ1 is defined, and the first sum goes from j = 1 to j = N . This
corresponds to a chain of interactions around a closed loop.

In both cases, the second sum runs from j = 1 to j = N to include all spins.
We will investigate various aspects of this model in the following sections before

going on to discuss the (qualitatively different) behavior in more than one dimension.
We begin by ignoring the interactions and setting J = 0 in the next section.

30.2 The Ising Chain in a Magnetic Field (J = 0)

Begin by setting J = 0 in eq. (30.5).
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H = −h
N∑

j=1

σj (30.6)

The canonical partition function is then given by

Z =
∑
{σ}

exp[−β(−h
N∑

j=1

σj)] (30.7)

where we have used the notation that {σ} = {σj |j = 1, · · · , N} is the set of all spins.
Eq. (30.7) can be simplified by using the best trick in statistical mechanics

(factorization of the partition function: Sections 19.12 and 23.7).

Z =
∑
{σ}

N∏
j=1

exp[βhσj ] =
N∏

j=1

∑
σj

exp[βhσj ] =
N∏

j=1

Zj (30.8)

where

Zj =
∑
σj

exp[βhσj ] (30.9)

This reduces the N -spin problem to N identical single-spin problems, each of which
involves only a sum over two states.

Since each σj = ±1, the sums can be carried out explicitly.

Zj = exp(βh) + exp(−βh) = 2 cosh(βh) (30.10)

It is easy to show that the average magnetization is given by

m = mj = 〈σj〉 =
exp(βh) − exp(−βh)
exp(βh) + exp(−βh)

= tanh(βh) (30.11)

Since it will be important later to be familiar with the graphical form of eq. (30.11),
it is shown in Fig. 30.1. The shape of the curve makes sense in that it shows that m = 0
when h = 0, while m → ±1 when h → ±∞.

The average energy of a single spin is then easily found.

Uj = 〈−hσj〉 = −hmj = −hm = −h tanh(βh) (30.12)

The energy of the entire Ising chain is given by simply multiplying by N .

U = 〈H〉 = −h

N∑
j=1

〈σj〉 = −hNm = −hN tanh(βh) (30.13)

The specific heat is found by differentiating with respect to the temperature.

c =
1
N

∂U

∂T
=

−1
NkBT 2

∂U

∂β
= kBβ2h2sech2(βh) (30.14)
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Fig. 30.1 Plot of the magnetization of an isolated spin against the magnetic field,

m = tanh(βh).

The specific heat goes to zero at both T = 0 and T = ∞.

30.3 The Ising Chain with h = 0, but J �= 0

Next, we will put the interactions between spins back into the Ising chain, but remove
the magnetic field. To simplify the problem we will use open boundary conditions.

H ′ = −J
N−1∑
j=1

σjσj+1 (30.15)

At first sight, finding the properties in this case looks considerably more difficult
than what we did in the previous section. Each spin is linked to its neighbor, so the
Hamiltonian cannot be split up in the same way to factorize the partition function.
However, we can factorize the partition function if we introduce new variables.

Let τ1 = σ1, and τj = σj−1σj for 2 ≤ j ≤ N . Clearly, each τj takes on the values
±1. Given the set of N values {τj |j = 1, . . . , N}, we can uniquely find the original
values of the σj ’s.

The Hamiltonian in eq. (30.15) can now be rewritten as

H = −J
N∑

j=2

τj (30.16)

which makes the Hamiltonian look just like eq. (30.6), which we derived in the previous
section for the case of independent spins in a magnetic field. Although the N − 1
τ -variables all appear in the Hamiltonian, σ1 does not. Summing over σ1 = ±1 in the
partition function is responsible for the overall factor of two in the equations below.
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Because eq. (30.16) is a sum of independent terms, the partition function can again
be calculated by factorization.

Z =
∑
{τ}

N∏
j=1

exp[βJτj ] = 2
N∏

j=2

∑
τj

exp[βJτj ] = 2
N∏

j=2

Z ′
j (30.17)

where

Zj =
∑

τj=±1

exp[βJτj ] = exp[βJ ] − exp[−βJτj ] = 2 cosh(βJ) (30.18)

and

Z = 2(Zj)N−1 = 2 (2 cosh(βJ))N−1 (30.19)

The free energy of the Ising chain with h = 0 is given by the logarithm of the
partition function in eq. (30.19).

−βF = lnZ = ln 2 + (N − 1) ln Zj = ln 2 + (N − 1) ln (2 cosh(βJ)) (30.20)

The energy of the system is easily found to be

U = −(N − 1)J tanh(βJ) (30.21)

and the specific heat per spin is

c = kBβ2J2sech2(βJ) (1 − 1/N) ≈ kBβ2J2sech2(βJ) (30.22)

Note that the form of eq. (30.22) is essentially the same as that of eq. (30.14), which
we found in the previous section. The specific heat in this case also goes to zero at
both T = 0 and T = ∞.

30.4 The Ising Chain with both J �= 0 and h �= 0

The full Hamiltonian in eq. (30.5) with both exchange interactions and a magnetic
field is more challenging. We cannot factorize the partition function in the same way
that we have done with other problems, so we will have to use a different approach,
known as the Transfer Matrix method. The basis of the method is that the partition
function can be expressed as a product of relatively small matrices—in this case, just
2 × 2 matrices—which can then be diagonalized and their determinants evaluated.

30.4.1 Transfer Matrix

We will consider the case of periodic boundary conditions, so that σn+1 = σ1, as
discussed earlier. To make the matrices more symmetric, we will write the Hamiltonian,
eq. (30.5), in the form

H = −J
N∑

j=1

σjσj+1 − h

2

N∑
j=1

(σj + σj+1) (30.23)
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The upper limit on the first summation is N , so that the last term is −JσNσ1, giving
us periodic boundary conditions.

Using eq. (30.23), we can transform the partition function into a product of 2 × 2
matrices.

Z =
∑
{σ}

exp

⎛
⎝−β

⎛
⎝−J

∑
j

σjσj+1 − 1
2
h
∑

j

(σj + σj+1)

⎞
⎠
⎞
⎠ (30.24)

=
∑
{σ}

∏
j

exp
(

βJσjσj+1 +
1
2
βh (σj + σj+1)

)

=
∑
{σ}

∏
j

T (σj , σj+1)

In this equation,

T (σj , σj+1) = exp
(

βJσjσj+1 +
1
2
βh (σj + σj+1)

)
(30.25)

is defined as the transfer matrix. Note that we have not exchanged the sums and
products, because we have not eliminated the coupling between variables. The sums
remain and are interpreted as matrix multiplication. As the name implies, we can also
write the transfer matrix explicitly as a matrix.

T (σj , σj+1) =

(
exp(βJ + βh) exp(−βJ)

exp(−βJ) exp(βJ − βh)

)
(30.26)

Eq. (30.24) is equivalent to representing the partition function as a product of
matrices. To see this more clearly, consider the factors involving only three spins,
somewhere in the middle of the chain, at locations j − 1, j, and j + 1.∑

σj=±1

T (σj−1, σj)T (σj , σj+1) = T 2(σj−1, σj+1) (30.27)

The expression on the left of eq. (30.27) can also be written in terms of the explicit
matrices from eq. (30.26).(

exp(βJ + βh) exp(−βJ)
exp(−βJ) exp(βJ − βh)

)(
exp(βJ + βh) exp(−βJ)

exp(−βJ) exp(βJ − βh)

)
(30.28)

Carrying out the matrix multiplication explicitly, we find

T 2(σj−1, σj+1) =

(
exp(2βJ + 2βh) + exp(−2βJ) exp(βh) + exp(−βh)

exp(βh) + exp(−βh) exp(2βJ − 2βh) + exp(−2βJ)

)

(30.29)



374 Phase Transitions and the Ising Model

If we carry out the sums over σ2 through σN , we find the matrix TN (σ1, σN+1).
Since σN+1 = σ1, the final sum over σ1 yields the partition function.

Z =
∑

σ1=±1

TN (σ1, σ1) (30.30)

Fortunately, we do not have to carry out all the matrix multiplications explicitly.
That is the power of the Transfer Matrix method—as we will show in the next section.

30.4.2 Diagonalizing T (σj , σj+1)

The next step is the thing that makes this calculation relatively easy. The trace is
invariant under a similarity transformation of the form

T̃ = RTR−1 (30.31)

In this equation, R and its inverse R−1 are both 2 × 2 matrices. If we write out the
product of T ’s we can see how it reduces to the original product of T ’s. The series of
products brings the R and R−1 matrices together, so that their product gives unity.
Using the compact notation, T (σj , σj+1) → Tj,j+1, we see that

T̃1,2T
′
2,3T̃3,4 = RT1,2R

−1RT2,3R
−1RT3,4R

−1 = RT1,2T2,3T3,4R
−1 (30.32)

This procedure can be extended to arbitrarily many T matrices. Since we have
periodic boundary conditions, after applying the transformation eq. (30.31) N times
and using R−1R = 1 between the T -matrices, eq. (30.30) becomes:

Z = TrRT̃NR−1 = TrT̃ N (30.33)

For the last equality, we have used the fact that the trace of a product of matrices is
invariant under a cyclic permutation.

Finding the trace is much easier if we capitalize on the freedom of making a
similarity transformation to diagonalize the T matrix. The diagonal elements of T ′

will then be given by the eigenvalues λ+ and λ−.

T̃ (σj , σj+1) =
(

λ+ 0
0 λ−

)
(30.34)

The product of N diagonal matrices is trivial

(T ′)N =
(

λN
+ 0
0 λN

−

)
(30.35)

and the partition function becomes

Z = λN
+ + λN

− (30.36)
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The only remaining task is to find the eigenvalues of the T matrix in eq. (30.25).
This involves solving the eigenvalue equation

Tχ = λχ (30.37)

or

(
exp(βJ + βh) exp(−βJ)

exp(−βJ) exp(βJ − βh)

)(
χ1

χ2

)
= λ

(
χ1

χ2

)
(30.38)

This matrix equation is equivalent to two simultaneous equations for λ, and can be
solved by setting the determinant equal to zero.∣∣∣∣∣ exp(βJ + βh) − λ exp(−βJ)

exp(−βJ) exp(βJ − βh) − λ

∣∣∣∣∣ = 0 (30.39)

Solving the resulting quadratic equation—and leaving the algebra to the reader—
we find the required eigenvalues.

λ± = eβJ cosh(βh) ±
√

e2βJ cosh2(βh) − 2 sinh(2βJ) (30.40)

The partition function of a system of N spins is given by inserting eq. (30.40) into
eq. (30.36).

It is interesting to see how this form of the partition function behaves in the limit
that N → ∞ (the thermodynamic limit). Since λ+ > λ−, the ratio λ−/λ+ < 1. We
can use this fact to rewrite eq. (30.36) in a convenient form.

Z = λN
+

(
1 +
(

λ−
λ+

)N
)

(30.41)

The free energy then takes on a simple form.

F = −kBT lnZ (30.42)

= −kBTN lnλ+ − kBT ln

(
1 +
(

λ−
λ+

)N
)

≈ −kBTN lnλ+ − kBT

(
λ−
λ+

)N

The free energy per spin in the thermodynamic limit is just

F

N
≈ −kBT lnλ+ − kBT

N

(
λ−
λ+

)N

→ −kBT lnλ+
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or, inserting λ+ from eq. (30.40),

lim
N→∞

F

N
= −kBT ln

(
eβJ cosh(βh) +

√
e2βJ cosh2(βh) − 2 sinh(2βJ)

)
(30.43)

Perhaps the most important thing to notice about eq. (30.43) is that the free energy
is an analytic function of the temperature everywhere except at T = 0. Since a phase
transition can be defined as a point at which the free energy is not analytic in the
limit of an infinite system (thermodynamic limit), this means that the one-dimensional
Ising model does not exhibit a phase transition at any non-zero temperature.

This lack of a phase transition was one of the main results that Ising found (by a
method different from that which we have used). Based on this result, he speculated
that the model would not show a phase transition in higher dimensions, either. In
this speculation, he was wrong. However, it took from 1924, when Ising did his thesis
work, until 1944, when Lars Onsager (Norwegian chemist and physicist, 1903–1976,
who became an American citizen in 1945) derived an exact solution for the two-
dimensional Ising model (without a magnetic field) that showed a phase transition.

Although Onsager’s exact solution of the Ising model is beyond the scope of this
book, we will discuss some approximate methods for calculating the behavior of the
Ising model at its phase transition, beginning with the Mean Field Approximation in
the next section.

30.5 Mean Field Approximation

The history of the Mean Field Approximation (MFA) is interesting in that it precedes
the Ising model by seventeen years. In 1907, Pierre-Ernest Weiss (French physicist,
1865–1940) formulated the idea of describing ferromagnetism with a model of small
magnetic moments arranged on a crystal lattice. He assumed that each magnetic
moment should be aligned by an average ‘molecular field’ due to the other magnetic
moments, so that the idea was originally known as the ‘Molecular Field Theory’. The
justification of the model was rather vague, but comparison with experiment showed
it to be reasonably correct.

In the following subsections we will derive the Mean Field Approximation for the
Ising model, as given in eq. (30.4), in an arbitrary number of dimensions.

H = −J
∑
〈j,k〉

σjσk − h

N∑
j=1

σj (30.44)

Recall that the notation 〈j, k〉 indicates that the summation in the first term is taken
over the set of all nearest-neighbor pairs of sites in the lattice.

30.5.1 MFA Hamiltonian

The basic idea of MFA is to approximate the effects of interactions on a spin by
its neighbors as an average (or ‘mean’) magnetic field. Specifically, we would like to
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calculate an approximation to the average magnetization of a spin at site j.

mj = 〈σj〉 (30.45)

For simplicity, we will assume periodic boundary conditions, so that the properties
of the model are translationally invariant. Since all spins see the same average
environment, they should all have the same average magnetization, m.

m =
1
N

∑
k

mk = mj (30.46)

For any given spin, σj , we can express the sum over the nearest-neighbor sites as
a sum over the neighbors δ, and extract all terms in eq. (30.44) that contain σj .

Hj = −J
∑

δ

σjσj+δ − hσj = −
⎛
⎝J
∑
j+δ

σj+δ + h

⎞
⎠σj (30.47)

Although eq. (30.47) can be regarded as a reduced Hamiltonian for spin σj , we
cannot interpret its average value as representing the average energy per spin, since
H �=∑j Hj because of double counting the exchange interactions. This is a mental
hazard that has caught many students and even a few textbook authors.

Note that eq. (30.47) has the same form as the Hamiltonian for a single spin in a
magnetic field, −hσ, from eq. (30.2), except that the external magnetic field is replaced
by an effective magnetic field

hj,eff = J
∑

δ

σj+δ + h (30.48)

The difficulty with the effective field found in eq. (30.48) is that it depends on the
instantaneous values of the neighboring spins, which are subject to fluctuations. MFA
consists of replacing the fluctuating spins in eq. (30.48) by their average values, which
must all be equal to the magnetization m, due to translational invariance.

hMFA
j,eff = J

∑
δ

〈σj+δ〉 + h = Jzm + h (30.49)

In the second equality in eq. (30.49) we have introduced the parameter z to denote the
number of nearest-neighbor sites in the lattice of interest (z = 4 for a two-dimensional
square lattice). The MFA Hamiltonian,

HMFA
o = −hMFA

o σo (30.50)
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has exactly the same form as eq. (30.2). An equation for the magnetization can be
written down immediately in analogy to eq. (30.11).

m = tanh(βhMFA
o ) = tanh(βJzm + βh) (30.51)

Unfortunately, there is no closed-form solution for eq. (30.51). However, there is
a nice graphical solution that makes it relatively easy to understand the essential
behavior of the solution, as well as guiding us to good approximations.

30.5.2 Graphical Solution of eq. (30.51) for h = 0

First consider the case of a vanishing magnetic field, h = 0, for which eq. (30.51)
simplifies.

m = tanh(βJzm) (30.52)

It might seem strange, but we can further simplify the analysis of eq. (30.52) by
expressing it as two equations.

m = tanh(x) (30.53)

x = βJzm (30.54)

The second equation can then be rewritten as

m =
(

kBT

zJ

)
x (30.55)

Since eqs. (30.53) and (30.55) are both equations for m as a function of x, it is
natural to plot them on the same graph, as shown in Fig. 30.2. Intersections of the
two functions then represent solutions of eq. (30.52).

When the slope of the line described by eq. (30.55) equals 1, it provides a dividing
line between two qualitatively different kinds of behavior. The temperature at which
this happens is known as the critical temperature, Tc, or the Curie temperature, in

–3 –2 –1 1 2 3
x

–1

1
m

Fig. 30.2 Plot of m = tanh x and m = (T/Tc)x for T > Tc.
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Fig. 30.3 Plot of m = tanh x and m = (Tc/T )x for T < Tc.

honor of Pierre Curie (French physicist, 1859–1906, awarded the 1903 Nobel Prize,
together with his wife, Maria Sklodowska-Curie, 1867–1934).

kBTc = zJ (30.56)

This expression for the mean field value of Tc means that eq. (30.55) can be rewritten
as

m =
(

T

Tc

)
x (30.57)

If T > Tc, the slope of the straight line described by eq. (30.57) is greater than 1,
and the two curves in Fig. 30.2 will only intersect at m = 0 and x = 0. This gives the
reasonable result that the magnetization above Tc is zero.

For temperatures below Tc there are three intersections of the two curves, as shown
in Fig. 30.3. The intersection at m = 0 is not stable, which will be left to the reader
to show. The other two intersections provide symmetric solutions m = ±m(T ), which
are both stable.

The two solutions found in Fig. 30.3 are expected by the symmetry of the Ising
Hamiltonian under the transformation σj → −σj for all spins.

30.5.3 Graphical Solution of eq. (30.51) for h �= 0

The situation is qualitatively different when the magnetic field, h, is non-zero. The
Ising Hamiltonian, eq. (30.4), is no longer invariant under the transformation σj →
−σj for all spins, because the second term changes sign. Eq. (30.51) can again be
simplified by writing it in terms of two equations.

m = tanh(x) (30.58)

x = βJzm + βh (30.59)
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Fig. 30.4 Plot of m vs. x and m = (Tc/T )x − h/kBT for T < Tc.

The second equation can then be rewritten as

m =
(

kBT

zJ

)
x − h

zJ
(30.60)

Fig. 30.4 shows a plot of eqs. (30.58) and (30.59) on the same graph. In analogy
to the previous section, the intersections of the two functions represent solutions to
eq. (30.11).

In Fig. 30.4 , T < Tc and h > 0. Of the three points of intersection that mark
solutions to eq. (30.11), only the one at the far right, with m > 0, is stable. The
intersection to the far left is metastable, and the intersection nearest the origin is
unstable. (Proofs will be left to the reader.)

It can be seen by experimenting with various parameters that there is always a
stable solution with m > 0 when h > 0. Similarly, when h < 0 there is always a stable
solution with m < 0.

As long as h �= 0, the MFA prediction for the magnetization is an analytic function
of the temperature, and there is no phase transition. This property is also true for the
exact solution; a phase transition appears only in the absence of an applied magnetic
field.

30.6 Critical Exponents

A curious aspect of phase transitions is that many properties turn out to have some sort
of power-law behavior. For example, the magnetization near the critical temperature
can be approximated by the expression

m ≈ A |T − Tc|β (30.61)

where A is a constant.

There is a serious source of potential confusion in eq. (30.61). The use of the symbol
β as a dimensionless critical exponent is in direct conflict with the use of the
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same symbol as β = 1/kBT . Unfortunately, both uses of β are so firmly rooted
in tradition that an alternative notation is impossible. I can only council patience
and a heightened degree of alertness when you encounter the symbol β anywhere
in statistical mechanics or thermodynamics.

There is a full Greek alphabet soup of critical exponents defined in a similar
manner. For example, for the specific heat,

c ∝ |T − Tc|−α (30.62)

and for the magnetic susceptibility χ,

χ =
(

∂m

∂h

)
h=0

∝ |T − Tc|−γ (30.63)

χ =
(

∂m

∂h

)
T=Tc

∝ |h|1/δ (30.64)

Correlations between spins can be described by a correlation function, which
gives rise to additional critical exponents. The correlation function has the following
asymptotic form for large separation r ≡ |�rj − �rk| between spins.

f(r) ≡ 〈σjσk〉 − 〈σj〉〈σk〉 ∝ r−d−2+η exp[−r/ξ] (30.65)

The correlation length ξ, which is the characteristic size of fluctuations near Tc,
diverges with an exponent ν,

ξ ∝ |T − Tc|−ν (30.66)

and an exponent η that describes the power-law fall-off of the correlation function in
eq. (30.65).

All of these critical exponents can be evaluated in MFA, as illustrated in the
following subsection.

30.7 Mean-Field Exponents

We can derive the value of β within the mean field approximation by making use of
the expansion of the hyperbolic tangent in eq. (30.67).

tanhx = x − 1
3
x3 + · · · (30.67)

Near the critical point, the magnetization m is small, so that the argument of the
hyperbolic tangent in eq. (30.52) is also small. We can therefore use eq. (30.67) to
approximate eq. (30.52).

m = tanh(βJzm) ≈ βJzm − 1
3
(βJzm)3 + · · · (30.68)



382 Phase Transitions and the Ising Model

One solution of eq. (30.68) is obviously m = 0, which is the only solution above Tc.
Below Tc, the non-zero solutions for the magnetization are stable, and to find them we
can divide eq. (30.68) by m �= 0. Solving the resulting equation for the magnetization,
we find

m2 = 3
(

T

Tc

)2(
1 − T

Tc

)
+ · · · (30.69)

Close to Tc, the magnetization behaves as

m =
√

3
(

T

Tc

)(
1 − T

Tc

)1/2

+ · · · (30.70)

so that we find

βMFA =
1
2

(30.71)

The calculation of each of the critical exponents can be carried out within the
mean field approximation. However, it is only fair to let the reader have some
of the fun, so we will leave the evaluation of the other critical exponents as
exercises.

30.8 Analogy with the van der Waals Approximation

In Chapter 17 we discussed the van der Waals fluid and showed that it predicted a
transition between liquid and gas phases. Although we did not emphasize it there,
the van der Waals fluid is also an example of a mean field theory. The interactions
between particles are approximated by an average (mean) attraction strength (rep-
resented by the parameter a) and an average repulsion length (represented by the
parameter b).

In the van der Waals approximation, the difference in density between the liquid
and gas phases was found to be given by the expression

ρliq − ρgas ∝ |T − Tc|βvdW (30.72)

close to the critical point.
Eq. (30.72) for the discontinuity in density in the vdW fluid is directly analogous

to eq. (30.61) for the discontinuity in magnetization in the Ising model from +|m| to
−|m| as the applied magnetic field changes sign. Indeed, the analogy between these
two models can be extended to all critical properties. Just as the density discontinuity
is analogous to the magnetization, the compressibility is analogous to the magnetic
susceptibility.

The analogy between the vdW fluid and the MFA Ising model even extends to both
models having the same value of the critical exponent with a value of βvdW = 1/2 =
βMFA. Indeed, all critical exponents, including those to be calculated as homework,
are the same in both models, which will be discussed in the next section.
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30.9 Landau Theory

The great Russian physicist, Lev Davidovich Landau (1908–1968) made a remarkable
generalization of the mean field approximation. His theory included not only the van
der Waals and Ising models that we have discussed, but any extension of them with
more distant or more complicated interactions.

Landau first introduced the concept of an ‘order parameter’; that is, an observable
quantity that describes a particular phase transition. For the Ising model, the order
parameter is the magnetization, which measures the degree of ordering of the spins.
For a fluid, the order parameter is given by the discontinuity of the density. In both
cases, the order parameter vanishes above the critical temperature, Tc.

To indicate the generality of the theory, we will denote the order parameter by
ψ. Landau postulated that the free energy F should be an analytic function of ψ, as
indeed it is for both the vdW fluid and the MFA model of ferromagnetism. Since we
are interested in the behavior near the critical temperature, we expect ψ to be small,
so Landau expanded the free energy in powers of ψ.

F = hψ + rψ2 + uψ4 + · · · (30.73)

In eq. (30.73), the first term indicates the interaction with an external magnetic
field, which is why h multiplies the lowest odd power of ψ. There will, of course, also
be higher-order odd terms, but we will ignore them in this introduction to the theory.
For a magnetic model, all odd terms vanish when h = 0 because of the symmetry of
the Hamiltonian.

The thermodynamic equilibrium state will be given by value of the order parameter
that corresponds to the minimum of the free energy. This leads us to assume that
u > 0, because otherwise the minimum free energy would be found at ψ = ±∞. With
this assumption we can find the minimum by the usual procedure of setting the first
derivative equal to zero. Ignoring higher-order terms, we find

∂F

∂ψ
= h + 2rψ + 3uψ3 = 0 (30.74)

First look at the solutions of eq. (30.74) for h = 0. There are two solutions. The
simplest is ψ = 0, which is what we expect for T > Tc. The other solution is

ψ = ±
√

−2r

3u
(30.75)

Clearly, there is only a real solution to eq. (30.74) for r < 0. This led Landau to assume
that r was related to the temperature, and to lowest order,

r = ro (T − Tc) (30.76)

Eq. (30.75) now becomes

ψ = ±
√

2ro (Tc − T )
3u

(30.77)
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Since the definition of the critical exponent β in Landau theory is that for very
small ψ,

ψ ∝ (Tc − T )β (30.78)

we see that quite generally, β = 1/2.
All other critical exponents can also be calculated within Landau theory, and their

values are identical to those obtain from MFA or the vdW fluid. The derivations will
be left to the reader.

The calculation of the critical exponents is remarkable for two reasons. The first is
that the same set of values are obtained from Landau theory for all models. This result
is known as ‘universality’. It is a very powerful statement. It says that the particular
interactions in any model of interest are completely unimportant in determining the
power laws governing critical behavior. The range, strength, or functional form of the
interactions make no difference at all.

With some important limitations, universality is even true!
The second important reason for the importance of Landau theory is that the

particular values he found for the critical exponents are wrong! They disagree with
both experiment and some exact solutions of special models.

The discovery that the Landau theory is wrong was a disaster. A great strength of
Landau theory is its generality; tweaking parameters has no effect on the values of the
critical exponents. Unfortunately, that means that if those values are wrong, there is
no easy way to modify the theory to obtain the right answer.

30.10 Beyond Landau Theory

The resolution of the crisis created by the disagreement of Landau theory with
experiment was not achieved until 1971, when Kenneth Wilson (American physicist,
1936–) applied renormalization-group theory to the problem. The key to the problem
turned out to be that at a critical point, fluctuations at all wavelengths interact with
each other; approximating the behavior of the system without including all interactions
between different length scales always leads to the (incorrect) Landau values of the
critical exponents.

The story of how physicists came to understand phase transitions is fascinating,
but unfortunately would take us beyond the scope of this book. On the other hand,
the intention of this book is only to be a starting point; it is by no means a complete
survey.

We come to the end of our introduction to thermal physics, which provides the
foundations for the broad field of condensed matter physics. It is my hope that you are
now well prepared for further study of this field, which is both intellectually challenging
and essential to modern technology.
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30.11 Problems

Problem 30.1

An Ising chain

We have solved the one-dimensional Ising chain with free boundary conditions for
either J = 0 or h = 0. We also solved the one-dimensional Ising chain with periodic
boundary conditions with both J �= 0 and h �= 0.
For this assignment we will return to the one-dimensional Ising chain with J �= 0, but
h = 0.

1. Use the same matrix methods we used in class to solve the general one-
dimensional chain to find the free energy with J �= 0, but h = 0. (Do not simply
copy the solution and set h equal to zero! Repeat the derivation.)

2. Find the free energy per site FN/N in the limit of an infinite system for both free
boundary conditions and periodic boundary conditions. Compare the results.

3. The following problem is rather challenging, but it is worth the effort.
A curious problem related to these calculations caused some controversy in the
late 1990s. Consider the following facts.
(a) Free boundary conditions.

The lowest energy level above the ground state corresponds to having all spins
equal to +1 to the left of some point and all spins equal to −1 to the right.
Or vice versa. The energy of these states is clearly 2J , so that the thermal
probability of the lowest state should be proportional to exp(−2βJ), and the
lowest-order term in an expansion of the free energy should be proportional
to this factor.

(b) Periodic boundary conditions.
The ground state still has all spins equal to 1 ( por −1), but the deviation
from perfect ordering must now occur in two places. One of them will look
like

· · · + + + + −−−− · · ·
and the other will look like

· · · − − −− + + + + · · ·
The energy of these states is clearly 4J , so the thermal probability of
the lowest state will be exp(−4βJ) for all N . In this case, the lowest-
order term in an expansion of the free energy should be proportional to
exp(−4βJ).

In the limit of an infinite system, this difference is not seen in the free energies
per site. Can you find the source of this apparent contradiction?
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Problem 30.2

Mean Field Approximation (MFA) for the Ising model

We derived the basic MFA equation for the magnetization in class.

m = 〈σj〉 = tanh(βzJm + βh)

z is the number of nearest neighbors. For a two-dimensional square lattice, z = 4.
We found the critical temperature to be given by

kBTc = zJ

1. Consider the case of zero magnetic field (h = 0). For temperatures below the
critical temperature, the magnetization is non-zero. As T → Tc, the magnetiza-
tion goes to zero as a power law

m ∝ (Tc − T )β

Find the value of β.
2. For temperatures above the critical temperature, find an exact solution for the

magnetic susceptibility

χ ≡ ∂m

∂h

at zero field.
The magnetic susceptibility diverges at the critical temperature with an expo-
nent called γ.

χ ∝ (T − Tc)−γ

What is the mean-field value of γ?

Suggestions for writing programs:
The next few problems deal with Monte Carlo simulations of the two-dimensional Ising
model. In writing the programs, use a sequential selection of spins for the MC steps.
Even though it is not exactly correct, the differences are very small and a sequential
selection is much faster. You can implement the algorithm any way you like, but I
recommend using a loop of the form:

while n < N MC:
nxm = L − 2
nx = L − 1
nxp = 0
while nxp < L :

nym = L − 2
ny = L − 1
nyp = 0
while nyp < L :
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STATEMENTS INSERTED HERE FOR MC UPDATE
nym = ny
ny = nyp
nyp += 1

nxm = nx
nx = nxp
nxp += 1

STATEMENTS TO RECORD MC DATA INSERTED HERE
n += 1

Problem 30.3

Monte Carlo simulation of a d = 2 Ising model

Write a computer program to perform a Monte Carlo computer simulation of the
two-dimensional Ising model in zero magnetic field.

H = −J
∑
〈i,j〉

σiσj

where the sum is over nearest-neighbor pairs of sites on a square lattice.

1. Write a program to perform a Monte Carlo simulation of the two-dimensional
Ising model. You should be able to simulate any size L × L lattice, with L
determined at the beginning of the program. You should be able to set the
temperature J at the beginning of the program. You can also write the program
for zero magnetic field. (We will use non-zero fields in later problems.)

2. Beginning with a random configuration on a fairly large lattice (L = 32),
perform a single run of 20 MC sweeps at T = 5.0. and look at the printout
of the configuration.

3. Beginning with a random configuration on a fairly large lattice (L = 32),
perform a single run of 20 MC sweeps at T = 3.0. and look at the print-out
of the configuration.

4. Beginning with a random configuration on a fairly large lattice (L = 32),
perform a single run of 20 MC sweeps at T = 2.0, and look at the print-out
of the configuration.

5. Compare the pictures of the configurations that you have generated at T =
5.0, 2.0, 2.0. What do you see?

6. Beginning with a random configuration on a fairly large lattice (L = 16 or L =
32), perform several runs with about 50 or 100 MC sweeps at T = 0.5. Keep
the length of the runs short enough so that you can do it several times without
wasting your time. Look at the print-outs of several configurations. If you see
something that seems unusual, print it out and hand it in. Explain why you
think it unusual.
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Problem 30.4

Monte Carlo simulation of a d = 2 Ising model (revisited)

For this problem we will modify the MC program to make a series of runs with
temperatures separated by a value ΔT .

1. Use the Python function definition feature to create a function that does
the entire MC simulation. Then put the function call inside a loop that first
equilibrates the spins for some number of sweeps and then generates the data you
want from a longer number of sweeps. The loop should change the temperature
by an amount ΔT for every iteration of equilibration and data-taking.

2. Calculate the average energy, specific heat, magnetization, and magnetic sus-
ceptabililty for temperatures of T = 2.0, 4.0, and 6.0 for an 8 × 8 lattice. Use a
large enough numbers of MC updates to obtain reasonable results, but not so
many that you waste your time sitting in front of a blank computer screen.

3. What do you notice about the data from your MC simulation?
This is a fairly open-ended question. The main purpose is to think about the
results of the simulation.

Problem 30.5

More Monte Carlo simulations of a two-dimensional Ising model

The Hamiltonian of a two-dimensional Ising model is: Use periodic boundary condi-
tions.

H = −J
∑

<i,j>

σiσj − h
∑

j

σj

For this entire assignment, take h = 0.
Use or modify the program you wrote for an earlier problem to do the following

simulations.

1. Simulate a 16 × 16 lattice with J = 1.0. Begin with giving each spin a random
value of +1 or −1. Scan the temperature from 5.0 to 0.5 at intervals of ΔT =
−0.5. Use about 100 or 1000 MC sweeps for each temperature, depending on
the speed of your computer.

Make a table of the results and plots of m vs. T , E vs. T , c vs. T , and χ
vs. T .
Does it look as if the critical temperature is at the mean field value of kBTc =
4J?

2. Repeat the sweeps, but this time choose the temperature range to concentrate
on the peaks in the specific heat and the magnetic susceptibility. Estimate the
location and height of the peak in specific heat and magnetic susceptibility.
These will be estimates of the critical temperature.

3. And now for something completely different.
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Do a simulation of a 32 × 32 lattice with negative temperature, and print out
the spins at the end of the run. Begin with the spins in a random state (T = ∞),
and simulate for 100 sweeps at T = −1.0.
What do you see?

Problem 30.6

A one-dimensional, spin-one model of magnetism

Consider a one-dimensional macroscopic model with spin-one quantum mechanical
magnetic moments located on each of N sites. The Hamiltonian is

H = −J
N−1∑
j=1

σjσj+1 − h
N∑

j=1

σj − D
N∑

j=1

σ2
j

where each σj takes on the values −1, 0, or +1, J is an exchange interaction parameter,
h is a magnetic field, and D is a parameter representing a ‘crystal field’. The entire
system is in contact with a thermal reservoir at temperature T .

1. Write down a formal expression for the partition function of this system. You
do not have to evaluate any sums or integrals that appear in your expression
for this part of the problem.

2. For general values of the parameters, derive a formal expression for the quantity

Q =

〈
N∑

n=1

σ2
n

〉

in terms of a derivative of the partition function with respect to an appropriate
parameter.

3. For J = 0, but arbitrary values of h and D, calculate the partition function for
this system.

4. For J = 0, but arbitrary values of h and D, calculate the free energy of this
system.

5. For J = 0 and h = 0, calculate the entropy of this system.



Appendix:

Computer Calculations and VPython

There are a number of problems in this book that require computer calculations. These
problems are not supplementary material; they are an essential part of the book. They
are designed to provide a deeper insight into the physics of many-particle systems than
would be possible through analytic calculations alone. This Appendix provides sample
programs to support your own programming.

There are definite advantages to writing computer programs yourself. Writing a
program requires focussing on details of the mathematical structure of a problem and,
I hope, understand the physics more deeply.

The choice of programming language is up to you. Over the life of this book,
programming languages will certainly change. However, the basic ideas of computer
programming will continue to be useful and applicable to new improvements and
developments.

The examples presented here use the VPython programming language, which I
strongly recommend to newcomers to computation. It runs on any computer using
any operating system. It is easy to learn, even if you’ve never programmed before.
And the price is right: you can download it for free!

I’ve provided some information about VPython programs to help you get started.
The first program I’ve given you is almost—but not quite—sufficient to carry out the
first assignment. However, if you know what every command means and what you
want the program to do, the necessary modifications should be fairly straightforward.
If there is anything about programming you do not understand, do not be shy about
asking the instructor.

A.1 Histograms

Since an important part of the first program is a print-out of a histogram, it is
important to understand how histograms work.

A histogram simply records a count of the number of times some event occurs. In
our first program, ‘OneDie.py’ (given in the next section), an event is the occurrence of
a randomly generated integer between ‘0’ and ‘5’. In the program, the number of times
the integer n occurs is recorded in the memory location ‘histogram[n]’. For example,
if the number ‘4’ occurs a total of 12 times during the course of the simulation, then
the value stored in histogram[4] should be 12. The command

print ( histogram [ 4 ] )

should contain the number ‘12’.
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Histograms can be represented in various ways in a VPython program. I have
chosen to represent them by an array. The command

histogram = ze ro s ( s ide s , i n t )

creates an array named ‘histogram’ with ‘sides=6’ memory locations, and sets the
value stored in every memory location equal to zero.

The command

histogram [ r ] = histogram [ r ] + 1

increments the number stored in the r-th location. It could also be written as

histogram [ r ] += 1

to produce the same effect. Commands of the form +=, –=, *=, and /= probably
seem strange the first time you see them, but they are very useful.

It is quite common to confuse a histogram with a list of numbers generated by the
program. They are completely different concepts. The length of the histogram is
given by the number of possibilities—six in the case of a single die. The length of
the list of random numbers is stored in the memory location ‘trials’; it can easily
be of the order of a million. Printing out a histogram should not take very long.
Printing out a list of random numbers can exceed both your paper supply and your
patience, without producing anything useful. When writing a program, be careful
that you do not make this error.

A.2 The First VPython Program

The following is a sample VPython program to simulate rolling a single die. Note that
either single quotes or double quotes will work in VPython, but they must match.
Double single quotes or back quotes will give error messages.

from v i s u a l import *
from v i s u a l . graph import *
import random
import sys
from types import *
from time import c lock , time

t r i a l s = 100
print ( ” Number o f t r i a l s = ” , t r i a l s )

s i d e s = 6

histogram = ze ro s ( s ide s , i n t )
print ( histogram )
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sum = 0.0
j=0
r=0

while j < t r i a l s :
r = in t ( random . random ( ) * s i d e s )
histogram [ r ] = histogram [ r ] + 1
j=j+1

j=0
while j < s i d e s :

print ( histogram [ j ] , histogram [ j ] − t r i a l s / s i d e s )
j=j+1

The first six lines in the program given above are called the ‘header’ and should
simply be copied at the beginning of any program you write. Blank lines are ignored, so
for clarity they can be put them in anywhere you like. Indentations are meaningful: in
the while command, every indented command will be carried out the required number
of times before going on the next unindented command. While typing in the program,
you will notice that VIdle indents automatically.

The function

random . random ( )

produces a (pseudo-)random number between 0.0 and 1.0. Multiplying it by 6 produces
a random number between 0.0 and 6.0. The command

r = in t ( random . random ( ) * s i d e s )

then truncates the random number to the next lowest integer and stores the result in
r, so that r is an integer between 0 and 5.

The program given above should run exactly as written. Copy the program to your
computer and try it! If it does not work, check very carefully for typographical errors.

Warning: Computers have no imagination. They do exactly what the program tells
them to do—which is not necessarily what you want them to do. Sometimes a
computer can recognize an error and tell you about it; but life being what it is, the
computer will probably not recognize the particular error that is preventing your
program from running properly. This might be another consequence of the Second
Law of Thermodynamics, as discussed in Chapter 11.

Make a permanent copy of the program given above, and then make your modifi-
cations in a new file. This is a good policy in general; base new programs on old ones,
but do not modify a working program unless you have a back-up copy.
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Experiment with making modifications. You cannot break the computer, so do not
worry about it. If the program just keeps running after a few seconds, you can always
stop it by closing the Python shell window.

If there is anything about the program that you do not understand, ask someone.
If you understand everything in this program, the computational work for all of the
rest of the problems will be much easier.

A.3 VPython Functions

The Python language allows you to define functions in a very natural way. They are
really quite easy to write, and can simplify your program enormously.

The following code is an example for defining a function to calculate the energy of
a simple harmonic oscillator:

def ENERGY( x , K ) :
energy = 0 .5 * K * x * x
return energy

The energy E can then be calculated for any value of position x and spring constant
K by the command:

E = ENERGY( x , K )

One peculiarity of Python is that you must define a function before you use it in
the program.

There is another interesting feature of Python (and VPython) that can affect how
you use functions. If you are using ‘global’ variables—that is, variables defined in
the main program—and not changing their values in the program, you do not have to
include them in the list of arguments. For example, the code above could be written as:

def ENERGY( ) :
energy = 0 .5 * K * x * x
return energy

This would give the same answer as before, as long as both ‘K’ and ‘x’ had been
defined before ‘ENERGY()’ was called.

However, be careful if you want to change a global variable in a program. As
soon as you write ‘x=...’, ‘x’ becomes a local variable, and VPython forgets the global
value. This can be a source of much annoyance. If you want to change a global variable
inside a function, include a statement such as ‘global x’ in the function for each global
variable.

Curiously enough, if you are using a global array, you can change its values in a
function without declaring it to be global. I am sure that there is a very good reason
for this discrepancy, but I do not have any idea of what it might be.

A.4 Graphs

VPython has very nice programs to produce graphs. However, they can be rather
daunting the first time you use them. The following VPython program provides
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examples for plotting multiple functions in a single graph. Three different ways to plot
functions are demonstrated. A second window is also opened at a different location
on the screen with yet another function.

from v i s u a l import *
from v i s u a l . graph import *
import random
import sys
from types import *
from time import c lock , time

# P r o g r a m t o d e m o n s t r a t e v a r i o u s p l o t t i n g o p t i o n s

MAX = 30

# The n e x t command o p e n s a p l o t t i n g w i n d o w

graph1 = gd i sp l ay (x=0, y=0, width=400 , he ight =400 ,
t i t l e=’ Trig f unc t i on s ’ ,

x t i t l e =’x ’ ,
y t i t l e =’y ’ ,

#xmax = 1 . 0 * MAX ,

#xm i n = 0 . 0 ,

#ymax = 1 0 0 . 0 ,

#ym i n = 0 . 0 ,

foreground=co l o r . black , background=co l o r . white )

k=1
Apoints = [ ]
while k < MAX:

Apoints += [ ( k * p i / MAX, cos ( k * p i / MAX ) ) ]
k=k+1

data1 = gvbars ( d e l t a =2./MAX, c o l o r=co l o r . red )
data1 . p l o t ( pos=Apoints )

k=1
Bpoints = [ ]
while k < MAX:

Bpoints += [ ( k * p i / MAX, −s i n ( k * p i / MAX ) ) ]
k=k+1

data2 = gdots ( c o l o r=co l o r . green )
data2 . p l o t ( pos = Bpoints )
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k=1
Cpoints = [ ]
while k < MAX:

Cpoints += [ ( k * p i / MAX, s i n ( k * p i / MAX ) ) ]
k=k+1

data3 = gcurve ( c o l o r=co l o r . b lue )
data3 . p l o t ( pos = Cpoints )

# The n e x t command o p e n s a s e c o n d p l o t t i n g w i n d o w

graph2 = gd i sp l ay (x=401 , y=0, width=400 , he ight =400 ,
t i t l e=’ Second p lo t ’ ,

x t i t l e=’X ’ ,
y t i t l e=’Y ’ ,

xmax = 2 .0 ,
#xm i n = 0 . 0 ,

#ymax = 1 . 1 0 ,

#ym i n = 0 . 0 ,

foreground=co l o r . black , background=co l o r . white )

k=0
Dpoints = [ ]
while k < MAX:

Dpoints += [ ( 2 . 0 * k / MAX, exp ( − 2 .0 * k / MAX ) ) ]
k=k+1

data4 = gcurve ( c o l o r=co l o r . b lue )
data4 . p l o t ( pos=Dpoints )

A.5 Reporting VPython Results

Results of computational problems, including numbers, graphs, program listing, and
comments, should be printed out neatly. Here are some hints for doing it more easily
in LATEX.

A.5.1 Listing a Program

LATEX has a special environment that was used to produce the program listings in this
Appendix. To use it, you need to include the following statement in the header:

\usepackage{listings}
\lstloadlanguages{Python}
\lstset{language=Python,commentstyle=\scriptsize}

The command for the listing environment is:
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\begin{lstlisting}
Program goes here

\end{lstlisting}

A.5.2 Printing—Pretty and Otherwise

The printed output of a VPython program is always found in the Python shell window.
The simplest procedure is just to copy it into your favorite word processor. However,
you might want to clean up the output of your VPython program first by specifying the
width of a column and the number of significant digits printed. Python and VPython
have formatting commands that are inserted into a ‘print’-statement. I think the
commands are most easily explained by giving an example.

Example: Setting Column Width

As an illustration of the default output, consider the following statements:

print ( ” sp in ” , ” h i s t ” , ” h i s t−average ” , ” f r e q ” , ” f req −1/ s i d e s ” )

and, indented inside a loop,

print ( j , h , hDif f , hOverTrials , hOSdi f f )

produce the following output:

sp in h i s t h i s t−average f r e q f req −1/ s i d e s
2 0.333333333333 0 .2 0.0333333333333

The more highly formatted statement (on multiple lines in this example, with
commas indicating the continuations)

print ( ’% 6 s ’ % ” sp in ” , ’% 7 s ’ % ” h i s t ” ,
’% 10 s ’ %” dev i a t i on ” , ’% 8 s ’ %” f r e q ” ,
’% 12 s ’ %” dev i a t i on ” )

print ( ’% 6d ’ % j , ’% 6 .2 f ’ % h , ’% 10 .4 f ’ % hDif f ,
’% 8 .4 f ’ %h OverTrials , ’% 12 .4 f ’ % hOSd)

produce the following output:

sp in h i s t dev i a t i on f r e q dev i a t i on
0 165 .00 −1.3333 0 .1650 −0.0017

In the expression ‘6s’, the ‘6’ refers to the column width, and ‘s’ means that a string
(letters) is to be printed. In the expression ‘6d’, the ‘6’ again refers to the column
width, and ‘d’ means that an integer is to be printed. In the expression ‘10.4f’, the
‘10’ refers to the column width, the ‘.4’ refers to the number of digits after the decimal
point, and ‘f’ means that a floating point number is to be printed.
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A.5.3 Printing Graphs in LaTeX

Under any operating system, there are efficient utility programs to capture an image
of the screen, a window, or a selected area. Use them to make a file containing the
output of the graphics window and copy it into your word processor. If you are using
LATEX, as I am, you can make a pdf file and then put it into your LATEX file as follows:

\begin{figure}[htb]
\begin{center}
\includegraphics[width=4in]{name_of_pdf_file}
\caption{Caption goes here}
\label{your choice of label here}

\end{center}
\end{figure}

You will also need to include

\usepackage{graphicx}

in your header.

A.6 Timing Your Program

If your program includes the header command

from time import c lock , time

timing your program, or parts of your program, is easy. Placing the command

t0 = c lock ( )

at the beginning of your program and something like

ProgramTime = c lock ( ) − t0
print ( ” Program time = ” , ProgramTime )

at the end of the program, produces a printout of how long the program took to run.
This information can be very useful in checking the efficiency of you program and
planning how many iterations you should use in doing the assignments.

There is also a function ‘time()’ that can be used in the same way as ‘clock()’.
The difference is that ‘clock()’ will calculate how much CPU time was used by your
program, while ‘time()’ will calculate how much real time has passed. Both are useful,
but ‘clock()’ gives a better measure of the efficiency of the program.

A.7 Molecular Dynamics

The key loop in a molecular dynamics (MD) program is illustrated below. The function
‘FORCE’ is assumed to have been defined earlier, along with the parameter K.
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# t h e v e l o c i t y i s a s s u m e d t o h a v e b e e n i n i t i a l i z e d

# b e f o r e t h e b e g i n n i n g o f t h e w h i l e − l o o p

n=0
while n < N MD:

n += 1
x += dt * v e l o c i t y
v e l o c i t y += dt * FORCE( x , K)

The algorithm given above is suggested to simplify the programming. A better
iteration method is the ‘leap-frog’ algorithm, in which the positions are updated at
even multiples of δt/2, while velocities are updated at odd multiples. If you are feeling
ambitious, try it out. You can check on the improvement by looking at the deviation
from energy conservation.

A.8 Courage

The most important thing you need to run computer programs is courage. For example,
when you are asked to run the first program for different numbers of trials, do not be
afraid of using a large number of trials. Do not just use five trials vs. eight trials. Start
with a small number such as 10, but then try 100, 1000, or higher. As long as the
computer produces the answer quickly, keep trying longer simulations. However, if the
computer takes more than about one second to finish, do not use longer simulations—
your time is also valuable.
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